Influence of nonlinear rigidity of elastic elements on the L-L type two-mass micromechanical gyroscope dynamics in a forced-oscillation regime | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 57. DOI: 10.17223/19988621/57/4

Influence of nonlinear rigidity of elastic elements on the L-L type two-mass micromechanical gyroscope dynamics in a forced-oscillation regime

In this paper, an L-L type micromechanical gyroscope is considered in a forced-oscillation regime. The main purpose is to analyze the effect of nonlinearity on the gyroscope dynamics. In this case, the nonlinearity is caused by difference in the rigidity of elastic elements. A distinctive feature of this work is that the angular velocity of the base is supposed to be arbitrary. A mathematical model of the micromechanical gyroscope, which is characterized by two active masses, is developed assuming that the mass of the frame is far less than that of the sensitive element. The problem solution is obtained using the Van der Pol variables. The differential equations of motion of the L-L type two-mass micromechanical gyroscope are solved numerically with an application of the mathematical package "Mathematica". The amplitudefrequency responses are plotted on the basis of calculated results. The obtained data allowed one to analyze the system behavior and to make an appropriate conclusion. It was revealed that when the frequency of driving force approaches the system natural frequencies, one of the amplitudes rapidly increases while another tends to zero.

Download file
Counter downloads: 178

Keywords

forced oscillations, arbitrary angular velocity of the base, nonlinear rigidity of elastic elements, two-mass micromechanical gyroscope, произвольная угловая скорость основания, вынужденные колебания, нелинейная жесткость упругих элементов, двухмассовый микромеханический гироскоп

Authors

NameOrganizationE-mail
Antonov Egor A.Moscow Power Engineering InstituteVe.no.m@yandex.ru
Merkuryev Igor' V.Moscow Power Engineering Institutemerkuryeviv@ya.ru
Podalkov Valeriy V.Moscow Power Engineering Instituteve.no.m@yandex.ru
Всего: 3

References

Меркурьев И.В., Подалков В.В. Динамика микромеханического и волнового твердотельного гироскопов. М.: Физматлит, 2009. 228 с.
Мартыненко Ю.Г., Меркурьев И.В., Подалков В.В. Управление нелинейными колебаниями вибрационного кольцевого микрогироскопа // Изв. РАН. МТТ. 2008. № 3. С. 77-89.
Лестев M.A. Нелинейный параметрический резонанс в динамике микромеханического гироскопа // Известия вузов. Приборостроение. 2004. Т. 47. № 2. С. 36-42.
Боголюбов Н.Н, Митропольский Ю.А. Асимптотические методы в теории нелинейных колебаний. М.: Наука, 1974. 503 с.
Shkel A. Microtechnology comes of age // GPS World. Sep. 2011. V. 22. P. 43-50.
Лестев А.М., Ефимовская А.В. О влиянии нелинейных факторов на динамику микромеханического гироскопа с двухмассовым чувствительным элементом // Изв. вузов. Приборостроение. 2012. Т. 55. № 5. С. 40-46.
Пешехонов В.Г. Современное состояние и перспективы развития гироскопических систем // Гироскопия и навигация. 2011. № 1. С. 3-17.
Baranova E.A., Evstifeev M.I., Eliseev D.H. Simulation of Translational Vibrations Effect on Torque-to-Balance RR-Type MEMS Gyroscope. Gyroscopy and Navigation. 2018. V. 9. No. 1. P. 50-56.
 Influence of nonlinear rigidity of elastic elements on the L-L type two-mass micromechanical gyroscope dynamics in a forced-oscillation regime | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 57. DOI: 10.17223/19988621/57/4

Influence of nonlinear rigidity of elastic elements on the L-L type two-mass micromechanical gyroscope dynamics in a forced-oscillation regime | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 57. DOI: 10.17223/19988621/57/4

Download full-text version
Counter downloads: 607