On weak solutions of a loaded hyperbolic equation with homogeneous initial conditions | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 63. DOI: 10.17223/19988621/63/1

On weak solutions of a loaded hyperbolic equation with homogeneous initial conditions

A mixed problem with homogeneous initial conditions for the loaded wave equation is considered. It contains an integral over the spatial variable from the natural degree of the solution module. The definition of the weak solution of this problem is introduced, for which the questions of existence and uniqueness are investigated. The compactness method is used to prove the existence of the solution. Its idea is that in proving the convergence of an approximate solution constructed by the Galerkin method, completely continuous embeddings of Sobolev spaces are essentially used. Based on a priori estimates partially established in the previous works of the author, other estimates are established in the proposed article. Following this, approximate Galerkin solutions are constructed. The existence of approximate solutions is proved by the existence theorem for ordinary differential equations. After that, a passage to the limit is performed. The main difficulty of applying the method is in proving the compactness of a family of approximate solutions. For this purpose, theorems on the compactness of embedding Sobolev spaces of a given order in Sobolev spaces of a smaller order are used. The uniqueness of the weak solution is proved by a standard procedure from the theory of hyperbolic equations. AMS Mathematical Subject Classification: 35L20, 35L72, 35D30.

Download file
Counter downloads: 188

Keywords

нагруженные уравнения в частных производных, априорные оценки, слабое решение, существование и единственность, loaded partial differential equations, a priori estimates, weak solution, existence and uniqueness

Authors

NameOrganizationE-mail
Boziev Oleg L.Kabardino-Balkarian State University; Kabardino-Balkarian Science Center of the Russian Academy of Sciencesboziev@yandex.ru
Всего: 1

References

Бозиев О.Л. Решение нелинейного гиперболического уравнения приближенно-аналитическим методом // Вестник Томского государственного университета. Математика и механика. 2018. № 51. С. 5-14. DOI: 10.17223/19988621/51/1.
Lions J.-L., Strauss W. Some non-linear evolution equation.// Bulletin de la S. M. F. 1965. V. 93. P. 43-96.
Medeiros L.A. On the weak solutions of nonlinear partial differential equations // Anais da Academia Brasileira de Ciencias. 1981. V. 53. No. 1. P. 13-15.
Бозиев О.Л. О слабых решениях одного гиперболического уравнения // Сообщения Академии наук Грузинской ССР. 1987. Т. 128. № 3. С. 485-488.
Филатов А. Н., Шарова Л. В. Интегральные неравенства и теория нелинейных колебаний. М.: Наука, 1976. 151 с.
Лионс Ж.-Л. Некоторые методы решения нелинейных краевых задач. М.: Мир, 1972. 587 с.
 On weak solutions of a loaded hyperbolic equation with homogeneous initial conditions | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 63. DOI: 10.17223/19988621/63/1

On weak solutions of a loaded hyperbolic equation with homogeneous initial conditions | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 63. DOI: 10.17223/19988621/63/1

Download full-text version
Counter downloads: 352