Abelian SACR-groups
A homomorphism μ: G ⊗ G → G is called a multiplication on an abelian group G. An abelian group G with a multiplication on it is called a ring on G. The study of abelian groups supporting only a certain ring is one of the trends in the additive group theory. An abelian group on which every ring is associative and commutative is called an SACR-group (this abbreviation comes from: “strongly associative and commutative ring”). In this paper, we study SACR-groups in the following classes of abelian groups: homogeneous completely decomposable quotient divisible groups and indecomposable torsion-free groups of rank 2. Together with associative and commutative rings, we are also interested in additive groups of filial rings. An associative ring in which all meta-ideals of finite index are ideals is called filial. Certainly, an associative ring R is called filial if the relation of being an ideal in R is transitive. An abelian group on which every associative ring is filial is called a TI-group. In Section 1, homogeneous completely decomposable quotient divisible abelian SACR-groups are described (Theorem 7). The proof of this theorem is based on Theorem 4: every quotient divisible group of rank 1 is an SACR-group. Further, in Section 3, it is shown that every indecomposable torsion-free group of rank 2 is an SACR-group. In particular, TI-groups are described in the class of indecomposable torsion-free abelian groups of rank 2. It is shown that the concepts of a TI-group and a nil-group in the class of rank 2 torsion-free indecomposable groups are equivalent. Until now, all known torsion-free TI-groups are SACR-groups. However, the converse is not true; an example is given in Section 3. AMS Mathematical Subject Classification: 20K15, 20K21
Keywords
абелева группа,
кольцо на группе,
SACR-группы,
TI-группы,
abelian group,
ring on group,
SACR-group,
TI-groupAuthors
Nguyen Thi Quynh Trang | Moscow Pedagogical State University | trangnguyen.ru@gmail.com |
Всего: 1
References
Фукс Л. Бесконечные абелевы группы: М.: Мир, 1974. Т. 1; 1977. Т. 2.
Feigelstock S. Additive Groups of Rings. Boston-London: Pitman Advanced Publishing Program, 1983. V. I. 113 p.; 1988. V. II. 100 p.
Feigelstock S. Additive groups of commutative rings // J. Quaest. Math. 2000. V. 23. P. 241-245. DOI: 10.2989/16073600009485973.
Andruszkiewicz R., Woronowicz M. On additive groups of associative and commutative rings // J. Quaest. Math. 2017. V. 40. No. 4. P. 527-537. DOI: 10.2989/16073606.2017.1302019.
Компанцева Е.И., Нгуен Т.К.Ч. Алгебраически компактные абелевы TI-группы // Чебышевский сборник. 2019. Т. 20. № 1. С. 202-211. DOI 10.22405/2226-8383-2018-20-1202-211.
Baer R. Meta ideals // Report Conf. Linear Algebras. June. 1956. Publ. National Acad. Sci. Nat. Res. Council. 1957. No. 502. P. 33-52.
Ehrlich G. Filial rings // Portugal. Math. 1983-1984. V. 42. P. 185-194.
Andruszkiewicz R., Puczylowski E. On filial rings // Portugal. Math. 1988. V. 45. No. 2. P. 139-149.
Filipowicz M., Puczylowski E. R. On filial and left filial rings // Publ. Math. Debrecen. 2005. V. 66. P. 257-267.
Andruszkiewicz R., Woronowicz M. On TI-groups // Recent Results in Pure and Applied Math. Podlasie. 2014. P. 33-41.
Нгуен Т.К. Ч. Вполне разложимые абелевы TI-группы // Материалы Международного молодежного научного форума «Ломоносов-2019». М.: МАКС Пресс, 2019. URL: https://lomonosov-msu.ru/archive/Lomonosov_2019/data/16175/85633_uid105565_report.pdf.
Beaumont R., Pierce R. Torsion free rings // Illinois J. Math. 1961. V. 5. P. 61-98.
Fomin A.A., Wickless W. Quotient divisible abelian groups // Proc. Amer. Math. Soc. 1998. V. 126. No. 1. P. 45-52.
Фомин А.А. К теории факторно делимых групп. I // Фундамент. и прикл. матем. 2012. Т. 17. № 8. C. 153-167.
Фомин А.А. К теории факторно делимых групп. II // Фундамент. и прикл. матем. 2015. Т. 20. № 5. C. 157-196.
Давыдова О.И. Факторно делимые группы ранга 1 // Фундамент. и прикл. матем. 2007. Т. 13. № 3. C. 25-33.
Гордеева Е.В., Фомин А.А. Вполне разложимые однородные факторно делимые абелевы группы // Чебышевский сборник. 2018. Т. 19. № 2. С. 376-387. DOI 10.22405/2226-8383-2018-19-2-376-387.
Компанцева Е.И. Кольца без кручения // Фундамент. и прикл. матем. 2009. Т. 15. № 8. С. 95-143.
Stratton A.E. The typeset of torsion-free rings of finite rank // Comment Math. Unit. St. 1979. V. 27. P. 199-211.
Beaumont R., Wisner R. Ring with additive group which is a Torsion-free groups of rank two // Acta Sci. Math. 1959. V. 20. P. 105-116.
Aghdam A.M. On the strong nilstufe of rank two torsion-free groups // Acta. Sci. Math. (Szeged) 1985. V. 49. P. 53-61.
Aghdam A.M. Rings on indecomposable torsion free groups of rank two // Int. Math. Forum 1. 2006. V. 3. P. 141-146.
Aghdam A.M., Najafizadeh A. On torsion-free rings with indecomposable additive group of rank two // Southeast Asian Bull. Math. 2008. V. 32. P. 199-208.