Convergence of locally self-similar solutions to exact numerical solutions of boundary layer equations for a plate | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 71. DOI: 10.17223/19988621/71/5

Convergence of locally self-similar solutions to exact numerical solutions of boundary layer equations for a plate

This paper considers a possibility of using locally self-similar solutions for a stationary boundary layer in linear stability problems. The solutions, obtained at various boundary conditions for a vibrationally excited gas, are compared with finite-difference calculations of the corresponding flows. An initial system of equations for a plane boundary layer of the vibrationally excited gas is derived from complete equations of two-temperature relaxation aerodynamics. Relaxation of vibrational modes of gas molecules is described in the framework of the Landau - Teller equation. Transfer coefficients depend on the static flow temperature. In a complete problem statement, the flows are calculated using the Crank - Nicolson finite-difference scheme. In all the considered cases, it is shown that the locally self-similar velocity and temperature profiles converge to the corresponding profiles for a fully developed boundary-layer flow calculated in a finite-difference formulation. The obtained results justify the use of locally self-similar solutions in problems of the linear stability theory for boundary-layer flows of a vibrationally excited gas.

Download file
Counter downloads: 47

Keywords

boundary layer, stability, vibrationally excited gas, locally self-similar solutions, finite-difference calculations

Authors

NameOrganizationE-mail
Grigoriev Yuriy N.Institute of Computational Technologies SB RASgrigor@ict.nsc.ru
Gorobchuk Aleksey G.Institute of Computational Technologies SB RASalg@eml.ru
Ershov Igor V.Novosibirsk State Agrarian Universityi_ershov@ngs.ru
Всего: 3

References

Wang X. Non-equilibrium effects on the stability of a Mach 10 flat-plate boundary layer // AIAA Paper 2017-3162. June 2017. P. 1-24. DOI: 10.2514/6.2017-3162.
Kunova O.V., Shoev G.V., Kudryavtsev A.N. Numerical simulation of nonequilibrium flows by using the state-to-state approach in commercial software // Thermophysics and Aeromechanics. 2017. V. 24. No. 1. P. 7-17. DOI: 10.1134/S0869864317010024.
Chen X., Fu S. Research of hypersonic boundary layer instability with thermal-chemical nonequilibrium effects // Proc. 8th European Conference for Aeronautics and Aerospace Sciences (EUCASS 2019), 1-4 July, Madrid. 2019. P. 1-7. DOI: 10.13009/EUCASS2019-674.
Лойцянский Л.Г. Механика жидкости и газа. М.; Л.: Государственное издательство технико-теоретической литературы, 1950. 676 с.
Grigor’ev Yu.N., Ershov I.V. Linear stability of the boundary layer of relaxing gas on a plate // Fluid Dynamics. 2019. V. 54. No. 3. P. 295-307. DOI: 10.1134/S0015462819030054.
Гапонов С.А., Петров Г.В. Устойчивость пограничного слоя неравновесно диссоциирующего газа. Новосибирск: Наука, 2013. 95 с.
Blottner F.G. Similar and nonsimilar solutions for nonequilibrium laminar boundary layer // AIAA Journal. 1963. V. 1. No. 9. P. 2156-2157.
Bertolotti F.B. The influence of rotational and vibrational energy relaxation on boundary-layer stability // Journal of Fluid Mechanics. 1998. V. 372. P. 93-118.
Grigoryev Yu.N., Ershov I.V. Stability and suppression of turbulence in relaxing molecular gas flows. Cham: Springer Intern. Publishing, 2017. 233 p. DOI: 10.1007/978-3-319-55360-3.
Браиловская И.Ю., Чудов Л.А. Решение уравнений пограничного слоя разностным методом // Вычислительные методы и программирование: сб. Вып. 1. М.: Изд-во МГУ, 1962. С. 167-182.
Пасконов В.М. Стандартная программа для решения задач пограничного слоя // Численные методы в газовой динамике: сборник. Часть 2. Москва: Изд-во МГУ, 1963. С. 110-116.
 Convergence of locally self-similar solutions to exact numerical solutions of boundary layer equations for a plate | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 71. DOI: 10.17223/19988621/71/5

Convergence of locally self-similar solutions to exact numerical solutions of boundary layer equations for a plate | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 71. DOI: 10.17223/19988621/71/5

Download full-text version
Counter downloads: 252