Symbolic representation of forced oscillations of branched mechanical systems | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 72. DOI: 10.17223/19988621/72/10

Symbolic representation of forced oscillations of branched mechanical systems

A calculation of dynamics of a mechanical system with n degrees of freedom, including inert bodies and elastic and damping elements, involves the derivation and integration of a system of n second-order differential equations, which are reduced to a differential equation of 2n order. An increase in the degree of freedom of the mechanical system by one increases the order of the resulting differential equation by two. The solution of higher-order differential equations is rather cumbersome and time-consuming. Integration of equations is proposed to be replaced with rather simpler algebraic methods. A number of relevant theorems that relate both active and reactive parameters of mechanical systems in the series and parallel connection of mechanical power consumers are proved. Using parallel-series and series-parallel connections as an example, the calculation methods for branched mechanical systems with any number of degrees of freedom, based on the use of symbolic or complex representation of forced harmonic oscillations, are shown. The phase relationships determining loading conditions and a possibility of its artificial change are considered. The vector diagrams of the amplitudes of forces, velocities and their components in a complex plane at a zero time instant are presented, which give a complete and clear idea of the relationship between these quantities.

Download file
Counter downloads: 84

Keywords

symbolic, complex method, parallel connection, series connection, loading conditions, vector diagram

Authors

NameOrganizationE-mail
Popov Igor’ P.Kurgan State Universityip.popow@yandex.ru
Всего: 1

References

Антонов Е.А., Меркурьев И.В., Подалков В.В. Влияние нелинейной жесткости упругих элементов на динамику двухмассового микромеханического гироскопа L-L-типа в режиме вынужденных колебаний // Вестник Томского государственного университета. Математика и механика. 2019. № 57. C. 53-61. DOI: 10.17223/19988621/57/4.
Боталов А.Ю., Родионов С.П. Численное исследование влияния жидкого наполнителя на свободные колебания тела, имеющего одну степень свободы // Вестник Томского государственного университета. Математика и механика. 2018. № 51. C. 75-85. DOI: 10.17223/19988621/51/7.
Попов И.П. Антирезонанс - резонанс скоростей // Мехатроника, автоматизация, управление. 2019. Т 20. № 6. С. 362-366. DOI: 10.17587/mau.20.362-366.
 Symbolic representation of forced oscillations of branched mechanical systems | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 72. DOI: 10.17223/19988621/72/10

Symbolic representation of forced oscillations of branched mechanical systems | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 72. DOI: 10.17223/19988621/72/10

Download full-text version
Counter downloads: 250