On the numerical solution to a non-classical problem of bending and stability for an orthotropic beam of variable thickness | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 73. DOI: 10.17223/19988621/73/10

On the numerical solution to a non-classical problem of bending and stability for an orthotropic beam of variable thickness

The mathematical model of the problem of bending of an elastically clamped beam is constructed on the basis of the refined theory of orthotropic plates of variable thickness. To solve the problem in the case of simultaneous action of its own weight and compressive axial forces, a system of differential equations with variable coefficients is obtained. The effects of transverse shear and the effect of reducing compressive force of the support are also taken into account. Passing on to dimensionless quantities, the specific problem for a beam of linearly varying thickness is solved by the collocation method. The stability of the beam is discussed. The critical values of forces are obtained by varying the axial compressive force. Results are presented in both tabular and graphical styles. Based on the results obtained, appropriate conclusions are drawn.

Download file
Counter downloads: 57

Keywords

elastically clamped support, bending, transverse shear, stability

Authors

NameOrganizationE-mail
Stepanyan Seyran Pa.Yerevan State Universityseyran.stepanyan@ysu.am
Всего: 1

References

Volmir. A.S. (1967) Ustoychivost' deformiruemykh sistem [Stability of deformable systems]. Moscow: Nauka.
Kirakosyan R.M., Stepanyan S.P. (2014) Neklassicheskaya zadacha izgiba ortotropnoy balki peremennoy tolshchiny s uprugo-zashchemlennoy oporoy [Non-classical problem of bending an orthotropic beam of variable thickness with an elastically clamped support]. Natsional'naya Akademiya Nauk Armenii. Doklady - National Academy of Sciences of Armenia. Reports. 114(3). pp. 205-212.
Kirakosyan R.M. (2000) Prikladnaya teoriya ortotropnykh plastin peremennoy tol'shchiny, uchityvayushchaya vliyanie deformatsiy poperechnykh sdvigov [Applied theory of orthotropic plates of variable thickness with allowance for the influence of transverse shear strains]. Yerevan: Nauka.
Ambartsumyan S.A. (1987) Teoriya anizotropnykh plastin [Theory of anisotropic plates]. Moscow: Nauka.
Gomez H., de Lorenzis L. (2016) The variational collocation method. Computer Methods in Applied Mechanics and Engineering. 309. pp. 152-181. DOI: 10.1016/j.cma.2016.06.003.
Kirakosyan R.M. (2015) Ob odnoy neklassicheskoy zadache izgiba uprugo zashchemlennoy krugloy plastinki [On one non-classical problem of a bend of an elastically clamped round plate]. Natsional'naya Akademiya Nauk Armenii. Doklady - National Academy of Sciences of Armenia. Reports. 115(4). pp. 284-289.
Kirakosyan R.M., Stepanyan S.P. (2016) Neklassicheskaya kraevaya zadacha uprugo zashchemlionnoy krugloy ortotropnoy plastinki [Non-classical boundary value problem of an elastically clamped partially loaded round orthotropic plate]. Izvestiya Natsional'noy Akademii Nauk Armenii. Mekhanika - Proceedings of National Academy of Sciences of Armenia. Mechanics. 69(3). pp. 59-70. DOI: 10.33018/69.3.12.
Kirakosyan R.M., Stepanyan S.P. (2017) Ustoychivost' sterzhnya pri uchiote umen'sheniya szhimayushchey sily uprugo zashchemlionnoy oporoy [Stability of the rod with allowance for the reduction of the compressive force of an elastically clamped support]. Izvestiya Natsional'noy Akademii Nauk Armenii. Mekhanika - Proceedings of National Academy of Sciences of Armenia. Mechanics. 70(3). pp. 57-66. DOI: 10.33018/70.3.5.
Kirakosyan R.M., Stepanyan S.P. (2017) Non-classical problem of bend of an orthotropic annular plate of variable thickness with an elastically clamped support. Proceedings of the Yerevan State University. Physical and Mathematical Sciences. 51(2). pp. 168-176. DOI: 10.46991/PYSU:A/2017.51.2.168.
Kirakosyan R.M., Stepanyan S.P. (2018) The non-classical problem of an elastically clamped orthotropic beam of compressive forces and transverse load. Proceedings of the Yerevan State University. Physical and Mathematical Sciences. 52(2). pp. 101-108. DOI: 10.46991/ PYSU:A/2018.52.2.101.
Kirakosyan R.M., Stepanyan S.P. (2019) The non-classical problem of an orthotropic beam of variable thickness with the simultaneous action of its own weight and compressive axial forces. Proceedings of the Yerevan State University. Physical and Mathematical Sciences. 53(3). pp. 183-190. DOI: 10.46991/PYSU:A/2019.53.3.183.
Batista M. (2019) Stability of clamped-elastically supported elastic beam subject to axial compression. International Journal of Mechanical Sciences. 155. pp. 1-8. DOI: 10.1016/ j.ijmecsci.2019.02.030.
Wagner H.N.R., Sosa E.M., Ludwig T., Croll J.G.A, Huhne C. (2019) Robust design of imperfection sensitive thin-walled shells under axial compression, bending or external pressure. International Journal of Mechanical Sciences. 156. pp. 205-220. DOI: 10.1016/ j.ijmecsci.2019.02.047.
Dang X., He K., Zhang F., Zuo Q., Du R. (2019) Multi-stage incremental bending to form doubly curved metal plates based on bending limit diagram. International Journal of Mechanical Sciences. 155. pp. 19-30. DOI: 10.1016/j.ijmecsci.2019.02.001.
Song Z., Cao Q., Dai Q. (2019) Free vibration of truncated conical shells with elastic boundary constraints and added mass. International Journal of Mechanical Sciences. 155. pp. 286-294. DOI: 10.1016/j.ijmecsci.2019.02.039.
Liu Z., Yang C., Gao W., Wu D., Li G. (2019) Nonlinear behaviour and stability of functionally graded porous arches with graphene platelets reinforcements. International Journal of Engineering Science. 137. pp. 37-56. DOI: 10.1016/j.ijengsci.2018.12.003.
Berchio E., Buoso D., Gazzolla F., Zucco D. (2018) A minimaxmax problem for improving the torsional stability of rectangular plates. Journal of Optimization Theory and Applications. 177(1). pp. 64-92. DOI: 10.1007/s.10957-018-1261-1.
Stephan E.P., Teltscher M.T. (2018) Collocation with trigonometric polynomials for integral equations to the mixed boundary value problem. Numerische Mathematik. 140(1). pp. 153-190. DOI: 10.1007/s00211-018-0960-8.
Dorogov Yu.I. (2016) Ustoychivost' gorizontal'nogo uprugogo sterzhnya [StabIility of a horizontal elastic bar]. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika - Tomsk State University Journal of Mathematics and Mechanics. 4(42). pp. 70-83. DOI: 10.17223/19988621/42/7.
Ishaquddin Md., Gopalakrishnan S. (2019) A novel weak form quadrature element for gradient elastic beam theories applied. Mathematical Modelling. 77(1). pp. 1-16. DOI: 10.1016/j.apm.2019.07.014.
Song H., Yang Z., Brunner H. (2019) Analysis of collocation methods for nonlinear Volterra integral equations of the third kind. Calcolo. 56(1). pp. 1-29. DOI: 10.1007/s10092-019-0304-9.
Papargyri-Beskou S., Tsepoura K.G., Polyzos D., Beskos D.E. (2003) Bending and stability analysis of gradient elastic beams. International Journal of Solids and Structures. 40(2). pp. 385-400. DOI: 10.1016/S0020-7683(02)00522-X.
Shcherbakov I.V., Lyukshin B.A. (2019) Modelirovanie povedeniya otklika ortotropnoy plastiny pri vozdeystvii dinamicheskoy nagruzki [Simulation of the behavior of an orthotropic plate response under dynamic load]. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika - Tomsk State University Journal of Mathematics and Mechanics. 61. pp. 111-118. DOI: 10.17223/19988621/61/10.
Grygorowicz M., Magnucka-Blandzi E. (2016) Mathematical modeling for dynamic stability of sandwich beam with variable mechanical properties of core. Applied Mathematics and Mechanics. 37(10). pp. 1361-1374. DOI: 10.1007/s10483-016-2137-9.
Chen Y., Yao W. (2016) Mechanical model of round window membrane under reverse excitation. Applied Mathematics and Mechanics. 37(10). pp. 1341-1348. DOI: 10.1007/s10483-016-2136-9.
Musa A.E.S. (2017) Galerkin method for bending analysis of beams on non-homogeneous foundation. Journal of Applied Mathematics and Computational Mechanics. 16(3). pp. 61-72. DOI: 10.17512/jamcm.2017.3.06.
Sowa L., Pawel K. (2017) Mathematical modeling of mechanical phenomena in the gantry crane beam. Journal of Applied Mathematics and Computational Mechanics. 16(3). pp. 97-104. DOI: 10.17512/jamcm.2017.3.09.
Lazarev N.P., Rudoy E.M. (2017) Optimal size of a rigid thin stiffener reinforcing an elastic plate on the outer edge. Journal of Applied Mathematics and Mechanics. 97(9). pp. 1120-1127. DOI: 10.1002/zamm.201600291.
 On the numerical solution to a non-classical problem of bending and stability for an orthotropic beam of variable thickness | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 73. DOI: 10.17223/19988621/73/10

On the numerical solution to a non-classical problem of bending and stability for an orthotropic beam of variable thickness | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 73. DOI: 10.17223/19988621/73/10

Download full-text version
Counter downloads: 174