Investigation of an approximate solution of some classes of surface integral equations of the first kind
A sequence is constructed that converges to an exact solution of a hypersingular integral equation of the first kind of the external Neumann boundary value problem for the Helmholtz equation, which is the boundary value of the solution of the external Neumann boundary value problem on the boundary of the domain. In addition, a sequence is constructed that converges to an exact solution of a weakly singular integral equation of the first kind of the external Dirichlet boundary value problem for the Helmholtz equation, which is the boundary value of the normal derivative of the solution of the external Dirichlet boundary value problem on the boundary of the domain.
Keywords
integral equation of the first kind,
weakly singular integral equations,
hypersingular integral equations,
Helmholtz equation,
exterior Neumann boundary-value problem,
exterior Dirichlet boundary-value problemAuthors
Khalilov Elnur H. | Azerbaijan State Oil and Industry University | elnurkhalil@mail.ru |
Всего: 1
References
Колтон Д., Кресс Р. Методы интегральных уравнений в теории рассеяния. М.: Мир, 1987. 311 с.
Davies P.J., Duncan D.B. Numerical approximation of first kind Volterra convolution integral equations with discontinuous kernels // Journal Integral Equations Applications. 2017. V. 29. No. 1. P. 41-73.
Giroire J., Nedelec J.C. Numerical solution of an exterior Neumann problem using a double layer potential // Mathematics of Computation. 1978. V. 32. P. 973-990.
Hsiao G.C., Wendland W. A finite element method for some integral equations of the first kind // Journal of Mathematical Analysis and Applications. 1977. V. 58. P. 449-481.
Каширин А.А., Смагин С.И. О численном решении задач Дирихле для уравнения Гельмгольца методом потенциалов // Журнал вычислительной математики и математической физики. 2012. Т. 52. № 8. С. 1492-1505.
Polishchuk O.D. Finite element approximations in projection methods for solution of some Fredholm integral equation of the first kind // Mathematical Modeling and Computing. 2018. V. 5. No. 1. P. 74-87.
Владимиров В.С. Уравнения математической физики. М.: Наука, 1976. 527 с.
Халилов Э.Г. Обоснование метода коллокации для одного класса поверхностных интегральных уравнений // Математические заметки. 2020. T. 107. № 4. C. 604-622.
Khalilov E.H. Cubic formula for class of weakly singular surface integrals // Proceedings of IMM of NAS of Azerbaijan. 2013. V. 39. No. 47. P. 69-76.
Khalilov E.H. On an approximate solution of a class of surface singular integral equations of the first kind // Georgian Mathematical Journal. 2020. V. 27. No. 1. P. 97-102.
Халилов Э.Г. О приближенном решении одного класса граничных интегральных уравнений первого рода // Дифференциальные уравнения. 2016. T. 52. No. 9. P. 1277-1283.
Халилов Э.Г. Некоторые свойства оператора, порожденного производной акустического потенциала двойного слоя // Сибирский математический журнал. 2014. Т. 55. № 3. С. 690-700.