The structure and kinematics of a nonnewtonian fluid flow in a pipe with a sudden expansion
This paper deals with a problem of a laminar steady-state flow of a non-Newtonian incompressible fluid in a pipe with a sudden expansion. The flow is described by a system of dimensionless equations in terms of stream function and vorticity in a cylindrical coordinate system: an equation of vorticity transfer and Poisson's equation for stream function. Rheological properties of the medium are defined by the Ostwald-de Waele model. The problem is solved numerically. The false transient method is applied to obtain a steady-state solution to the problem. The equations are discretized in accordance with the finite-difference method based on the alternating direction scheme. The final system of equations is solved by the tridiagonal matrix algorithm. Flow structures of Newtonian, pseudoplastic, and dilatant fluids are found to include twodimensional flow zones before and after expansion plane. A recirculation region occurs in the inner corner. To assess the effect of the Reynolds number, expansion ratio, and power-law index on the lengths of the two-dimensional flow zones and recirculation region, the graphs are plotted over a wide range of variation in the parameters. Local pressure losses are presented as functions of the governing parameters of the problem.
Keywords
Ostwald-de Waele model,
non-Newtonian fluid,
axisymmetric flow,
sudden expansion,
recirculation zone,
Reynolds number,
hydraulic resistanceAuthors
Mamazova Dilara A. | Tomsk State University | mamazova.dilara@mail.ru |
Ryltseva Kira E. | Tomsk State University | kiraworkst@gmail.com |
Shrager Gennady R. | Tomsk State University | shg@ftf.tsu.ru |
Всего: 3
References
Habib M.A., Whitelaw J.H. The calculation of turbulent flow in wide-angle\\diffusers // Nu merical Heat Transfer. 1982. V. 5. No. 2. P. 145-164.
Macagno E.O, Hung T.K.Computational and experimental study of a captive annular eddy // Journal of Fluid Mechanics. 1967. V. 28. No. 1. P. 43-63.
Oliveira P.J., Pinho F.T. Pressure drop coefficient of laminar Newtonian flow in axisymmetric sudden expansions // International Journal of Heat and Fluid Flow. 1997. V. 18. No. 5. P. 518-529.
Stieglmeier M., Tropea C., Weiser N., Nitsche W. Experimental investigation of the flow through axisymmetric expansions // Journal of Fluids Engineering. 1989. V. 111. No. 4. P. 464-471.
Back L.H., Roschke E.J. Shear-layer flow regimes and wave instabilities and reattachment lengths downstream of an abrupt circular channel expansion // Journal of Applied Mechanics. 1972. V. 39. No. 3. 677-681.
Борзенко Е.И., Рыльцева К.Е., Шрагер Г.Р. Численное исследование характеристик тече ния неньютоновской жидкости в трубе с внезапным сужением // Вестник Томского государственного университета. Математика и механика. 2019. № 58. C. 56-70.
Pienaar V.G. Viscous Flow Through Sudden Contractions. Dissertation. Cape Peninsula Uni versity of Technology. 2004.
Hammad K.J., Vradis G.C., Otugen M.V. Laminar flow of a Herschel-Bulkley fluid over an axisymmetric sudden expansion // Journal of Fluids Engineering. 2001. V. 123. No. 3. P. 588-594.
Hawa T, Rusak Z. Viscous flow in a slightly asymmetric channel with a sudden expansion // Physics of Fluids. 2000. V. 12. No. 9. P. 2257-2267.
Hammad K.J. Suddenly expanding recirculating and non-recirculating viscoplastic non-Newtonian flows // Journal of Visualization. 2015. V. 18. No. 4. P. 655-667.
Forrest A.L., Fattah K.P., Mavinic D.S., Koch F.A. Optimizing struvite production for phosphate recovery in WWTP // Journal of Environmental Engineering. 2008. V. 134. No. 5. P. 395-402.
Шульман З.П. Конвективный тепломассоперенос реологически сложных жидкостей. М.: Энергия, 1975. 352 с.
Neofytou P., Drikakis D. Non-Newtonian flow instability in a channel with a sudden expansion // Journal of Non-Newtonian Fluid Mechanics. 2003. V. 111. No. 2-3. P. 127-150.
Ternik P., Marn J., & Žunič Z. Non-Newtonian fluid flow through a planar symmetric expansion: Shear-thickening fluids // Journal of Non-Newtonian Fluid Mechanics. 2006. V. 135. No. 2-3. P. 136-148.
Bell B.C., Surana K.S. p-Version least squares finite element formulation for two-dimensional incompressible Newtonian and non-Newtonian non-isothermal fluid flow // Computers & Structures. 1995. V. 54. No. 1. P. 83-96.
Scott P.S., Mirza F.A., Vlachopoulos J. A finite element analysis of laminar flows through planar and axisymmetric abrupt expansions // Computers & Fluids. 1986. V. 14. No. 4. P. 423-432.
Badekas D., Knight D.D. Eddy correlations for laminar axisymmetric sudden expansion flows // Journal of Fluids Engineering. 1992. V. 114. No. 1. P. 119121.
Dagtekin І., Unsal M. Numerical analysis of axisymmetric and planar sudden expansion flows for laminar regime // International Journal for Numerical Methods in Fluids. 2011. V. 65. No. 9. P. 1133-1144.
Mishra S., Jayaraman K. Asymmetric flows in planar symmetric channels with large expansion ratio // International Journal for Numerical Methods in Fluids. 2002. V. 38. No. 10. P. 945-962.
Manica R., De Bortoli A. Simulation of sudden expansion flows for power-law fluids // Journal of Non-Newtonian Fluid Mechanics. 2004. V. 121. No. 1. P. 35-40.
Pinho F.T., Oliveira P.J., Miranda J.P. Pressure losses in the laminar flow of shear-thinning power-law fluids across a sudden axisymmetric expansion // International Journal of Heat and Fluid Flow. 2003. V. 24. No. 5. P. 747-761.
Рыльцева К.Е. Неизотермические течения реологически сложных жидкостей в каналах переменного сечения: диссертация. Томск: Национальный исследовательский Томский государственный университет, 2020. 103 с.
Идельчик И.Е. Справочник по гидравлическим сопротивлениям / под ред. М.О. Штейнберга. 3-е изд. М.: Машиностроение, 1992. 672 с.
Tiu C., Boger D.V., Halmos A.L. Generalized method for predicting loss coefficients in entrance region flows for inelastic fluids // The Chemical Engineering Journal. 1972. V. 4. Iss. 2. P. 113-117.