Experimental mathematics and its use in number theory | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 75. DOI: 10.17223/19988621/75/2

Experimental mathematics and its use in number theory

The purpose of the work is to show the usefulness and features of experimental mathematics. Two number theory problems are solved using Wolfram Mathematica. The solution to the first problem has already been published. Congruencies of the form F(A(p)) ≡ εF(S) (mod p) by prime modulo p are proved, whenever A(p) is a polynomial respect p with integer coefficients. Here, F(n) is an nth Fibonacci number, ε is 1 or -1, and S is a simple expression which contains only coefficients of the polynomial A(p). The second problem examines the behavior of prime gaps. It is proved that if G is the set of all prime gaps whose length is a multiple of 6, the asymptotic density of G is ½. The first study is mentioned to compare the role of experimentation for these two tasks. In the first study, experiments were necessary - they helped, starting with known facts, to formulate chains of reliable guesses which turned out to be easy to prove. In the second study, it was not certain that the calculations being done could lead to anything. It was possible to arrive at the formulation of a theorem on the value of ½ for the limit without experimental calculations. Only a conjecture about the formulation of the theorem is required. However, the experiments additionally led to a hypothesis on how the passage to the limit is implemented for the first 80 million primes. AMS Mathematical Subject Classification: MSC 11A41, 11A07, 11B39

Download file
Counter downloads: 63

Keywords

Mathematica system, prime gaps, Fibonacci numbers, experimental mathematics

Authors

NameOrganizationE-mail
Zyuz’kov Valentin M.Tomsk State University; Tomsk State University of Control Systems and Radioelectronicsvmz@math.tsu.ru
Всего: 1

References

Гельфанд А.О., Линник Ю.В. Элементарные методы в аналитической теории чисел. М.: Физматгиз, 1962. 272 с.
Hardy G.H., Wright E.M. An Introduction to the Theory of Numbers. Oxford, England: Clarendon Press, 2008. 642 p.
Крэндалл Р., Померане К. Простые числа. Криптографические и вычислительные аспекты. М.: УРСС; Книжный дом «Либроком», 2011. 664 с.
Weisstein Eric W. Prime Gaps // From MathWorld - A Wolfram Web Resource. URL: https://mathworld.wolfram.com/PrimeGaps.html.
Зюзьков В.М. Эксперименты в теории чисел. Томск: Изд-во НТЛ, 2019. 348 с. URL: http://vital.lib.tsu.rU/vital/access/manager/Repository/vtls:000658998.
Зюзьков В.М. Сравнения с числами Фибоначчи по простому модулю // Вестник Томского государственного университета. Математика и механика. 2021. № 69. С. 15-21. DOI: 10.17223/19988621/69/2.
Weisstein Eric W. Experimental Mathematics // From MathWorld - A Wolfram Web Resource. URL: https://mathworld.wolfram.com/ExperimentalMathematics.html
Троицкий вариант. № 13(839). 30 сентября 2008.
Лакатос И. Доказательства и опровержения: Как доказываются теоремы. 2-е изд. М.: Изд-во ЛКИ, 2010. 152 с.
Пойа Д. Математическое открытие: Решение задач: основные понятия, изучение и преподавание: пер. с англ. 3-е изд. М.: КомКнига, 2010. 448 с.
Wolfram S. A New Kind of Science. Wolfram Media, 2002. 1197 p.
Wolfram Mathematica. URL: http://www.wolfram.com/mathematica.
Пойа Д. Математика и правдоподобные рассуждения. М.: Наука, 1975. 464 с.
 Experimental mathematics and its use in number theory | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 75. DOI: 10.17223/19988621/75/2

Experimental mathematics and its use in number theory | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 75. DOI: 10.17223/19988621/75/2

Download full-text version
Counter downloads: 278