Left-invariant para-Sasakian structure on the Heisenberg group | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 75. DOI: 10.17223/19988621/75/4

Left-invariant para-Sasakian structure on the Heisenberg group

Among the eight three-dimensional Thurston geometries, there is the Heisenberg group, the nilpotent Lie group of real 3x3 matrices of a special form. It is known that this group has a left-invariant Sasakian structure. This article proves that there is also a paracontact metric structure on the Heisenberg group, which is also Sasakian. This group has a unique contact metric connection with skew-symmetric torsion, which is invariant under the group of automorphisms of the para-Sasakian structure. The discovered connection is proved to be a contact metric connection for any para-Sasakian structure. The concept of a connection compatible with the distribution is introduced. It is found that the Levi-Civita connection and the contact metric connection on the Heisenberg group endowed with a para-Sasakian structure are compatible with the contact distribution. Their orthogonal projections on this distribution determine the same truncated connection. It is proved that Levi-Civita contact geodesics and truncated geodesics coincide. It is found that contact geodesics are either straight lines lying in the contact planes or parabolas the orthogonal projections of which on the contact planes are straight lines. The results obtained in this article are also valid for the multidimensional Heisenberg group. AMS Mathematical Subject Classification: 53D10, 53C50

Download file
Counter downloads: 31

Keywords

truncated connection, connection compatible with a distribution, contact metric connection, paracontact structure, truncated connection, connection compatible with a distribution, contact metric connection, paracontact structure

Authors

NameOrganizationE-mail
Pan’zhenskii Vladimir I.Penza State Universitykaf-geom@yandex.ru
Rastrepina Anastasia O.Penza State Universityn.rastrepina@mail.ru
Всего: 2

References

Громол Д., Клингенберг В., Мейер В. Риманова геометрия в целом / пер. с нем. Ю.Д. Бураго; под ред. и с доп. В. А. Топоногова. М.: Мир, 1971. 343 с.
Panzhensky V.I., Klimova T.R. Contact metric connection on the Heisenberg group // Russian Mathematics. 2018. V. 62. No. 11. P. 45-52. DOI: 10.3103/S1066369X18110051.
Кириченко В.Ф. Дифференциально-геометрические структуры на многообразиях. Одесса: Печатный дом, 2013. 458 с.
Blair D.E. Contact Manifolds in Riemannian Geometry. Lecture Notes in Mathematics. Berlin; Heidelberg; New York: Springer-Verlag, 1976. 148 p. DOI: 10.1007/BFb0079307.
Смоленцев Н.К., Шагабудинова И.Ю. О парасасакиевых структурах на пятимерных алгебрах Ли // Вестник Томского государственного университета. Математика и механика. 2021. № 69. С. 37-52. DOI: 10.17223/19988621/69/4.
Смоленцев Н.К. Левоинвариантные пара-сасакиевы структуры на группах Ли // Вестник Томского государственного университета. Математика и механика. 2019. № 62. С. 27-37. DOI: 10.17223/19988621/62/3.
Boyer C.P. The Sasakian geometry of the Heisenberg group // Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie. 2009. V. 52. No. 3. P. 251-262.
Binz E., Pods S. The Geometry of Heisenberg Groups: Mathematical Surveys and Monographs (V. 151). Providence, R.I.: American Mathematical Society, 2008. 321 p.
Gonzalez J.C., Chinea D. Quasi-Sasakian homogeneous structures on the generalized Heisenberg group H(p,1) // Proceedings of the American Mathematical Society. 1989. V. 105. No. 1. P. 173-184. DOI: 10.1090/S0002-9939-1989-0973843-9.
Agrachev A., Barilari D., Boscain U.Introduction to Riemannian and sub-Riemannian geometry. Trieste, Italy: SISSA, 2012. 179 p.
Alvarez M.A., Rodriguez-Vallarte M.C., Salgado G. Contact nilpotent Lie algebras // Proceedings of the American Mathematical Society. 2017. V. 145. No. 4. P. 1467-1474. DOI: 10.1090/proc/13341.
Сачков Ю.Л. Теория управления на группах Ли // Современная математика. Фундаментальные направления. 2007. Т. 26. С. 5-59. DOI: 10.1007/s10958-008-9275-0.
Вершик А.М., Гершкович В.Я. Неголономные динамические системы. Геометрия распределений и вариационные задачи // Итоги науки и техники. Серия Современные проблемы математики. Фундаментальные направления. М.: ВИНИТИ, 1987. Т. 16. С. 5-85.
Вершик А.М., Фадеев Л.Д. Лагранжева механика в инвариантном изложении // Проблемы теоретической физики. Л.: Издательство ЛГУ, 1975. С. 129-141.
 Left-invariant para-Sasakian structure on the Heisenberg group | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 75. DOI: 10.17223/19988621/75/4

Left-invariant para-Sasakian structure on the Heisenberg group | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 75. DOI: 10.17223/19988621/75/4

Download full-text version
Counter downloads: 278