Comparison of advanced turbulence models for the Taylor-Couette flow
Swirling flows of fluids and gases are an integral part of many complex flows which are widely encountered in nature and technology. The working process of numerous technical devices (cyclones, vortex combustion chambers, air separators, gas and steam turbines, electric machines and generators, etc.) is generally determined by the laws of hydrodynamics and heat exchange of rotating flows. The problem of deriving general laws for a turbulent flow in the field of centrifugal forces provokes considerable scientific interest since it belongs to an underdeveloped field of hydromechanics. Therefore, mathematical modeling of swirling turbulent flows is still an urgent problem. In this paper, a comparative analysis of the advanced turbulence models for the Taylor -Couette flow is carried out. For this purpose, the linear turbulence models (SARC and SST-RC), the Reynolds stress method SSG/LRR-RSM-w2012, and a two-fluid model are used. The results obtained using these models are compared with each other and with known experimental data and direct numerical simulation results. The numerical results calculated with the use of turbulence models for the Taylor-Couette flow confirm that almost all the models adequately describe velocity profiles. However, they yield different turbulent viscosity values and, as a result, different friction coefficients. A comparison of the numerical results shows that the friction coefficient calculated using a two-fluid turbulence model is the closest to that obtained experimentally.
Keywords
rotating flow,
Reynolds-averaged Navier-Stokes equations,
SSG/LRR-RSM-w2012 model,
SARC model,
SST model,
two-fluid modelAuthors
Malikov Zafar M. | Institute of Mechanics and Seismic Stability of Structures Named after M.T. Urazbayev | malikov.z62@mail.ru |
Nazarov Farrukh Kh. | Tashkent State Technical University Named after Islam Karimov | farruxnazar@mail.ru |
Madaliev Murodil E. | Institute of Mechanics and Seismic Stability of Structures Named after M.T. Urazbayev | madaliev.me2019@mail.ru |
Всего: 3
References
Versteegh Т.А., Nieuwstadt F.T.M. Turbulent Budgets of Natural Convection in an Infinite, Differentially Heated, Vertical Channel // International Journal of Heat and Fluid Flow. 1998. V. 19 (2). P. 135-149. doi: 10.1016/S0142-727X(97)10018-2
Boudjemadi R., Maupu V., Laurence D., Le Quere P. Direct Numerical Simulation of Natural Convection in a Vertical Channel: a Tool for Second-Moment Closure Modelling // Proc. Engineering Turbulence Modelling and Experiments 3. Amsterdam : Elsevier, 1996. Р. 39.
Peng S.H., Davidson L. Large Eddy Simulation of Turbulent Buoyant Flow in a Confined Cavity // International Journal of Heat and Fluid Flow. 2001. V. 22 (3). P. 323-331. doi: 10.1016/S0142-727X(01)00095-9
Cabot W., Moin P. Approximate Wall Boundary Conditions in the Large-Eddy Simulation of High Reynolds Number Flow // Flow, Turbulence and Combustion. 1999. V. 63. P. 269-291. doi: 10.1023/A:1009958917113
Spalart P.R., Shur M.L. On the sensitization of turbulence models to rotational and curvature // Aerospace Science and Technology. 1997. V. 1 (5). P. 297-302.
Smirnov P., Menter F. Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term // Proceedings of the American Society of Mechanical Engineers Turbo Expo 2008: Power for Land, Sea and Air. Germany. 2008. P. 10.
Spalart P.R., Allmaras S.R. A one-equation turbulence model for aerodynamic flow // Ameri can Institute of Aeronautics and Astronautics Paper. 1992. V. 12 (1). P. 439-478.
Menter F.R. Zonal two-equation k-ю turbulence models for aerodynamic flows // American Institute of Aeronautics and Astronautics Paper. 1993. Art. 2906.
Sentyabov A.V., Gavrilov A.A., Dekterev A.A. Issledovaniye modeley turbulentnosti dlya rascheta zakruchennykh techeniy [Study of turbulence models for calculating swirling flows] // Teplofizika i aeromekhanika - Thermophysics and Aeromechanics. 2011. V. 18 (1). P. 81-94.
Spalding D.B. Chemical reaction in turbulent fluids // Journal physicochemical hydrodynamics. 1983. V. 4. P. 323-336. doi: 10.1007/978-981-15-2670-1_12
Spalding D.B. A turbulence model for buoyant and combusting flows // 4th Int. Conf. on Numerical methods in Thermal Problems. 1984. Swansea, 15-18 July.
Malikov Z. Mathematical Model of Turbulence Based on the Dynamics of Two Fluids // Applied Mathematic Modeling. 2020. V. 82 (202). P. 409-436. doi: 10.1016/j.apm.2020.09.029
Malikov Z.M., Madaliev M.E. Numerical Simulation of Two-Phase Flow in a Centrifugal Separator // Fluid Dynamics. 2020. V. 55 (8). P. 1012-1028. doi: 10.1134/S0015462820080066
Malikov Z.M., Madaliev M.E. Numerical study of a swirling turbulent flow through a channel with an abrubt expansion // Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika [Tomsk State University Journal of Mathematics and Mechanics]. 2021. No. 72. P. 93-101. doi: 10.17223/19988621/72/8
Malikov Z.M., Madaliev M.E. New two-fluid turbulence model-based numerical simulation of flow in a flat suddenly expanding channel // Herald of the Bauman Moscow State Technical University. Series Natural Sciences. 2021. No. 4 (97). P. 24-39. doi: 10.18698/1812-3368-2021-4-24-39
Rayleigh L. On the dynamics of revolving fluids // Proceedings of the Royal Society of London. Series A. Containing Papers of a Mathematical and Physical Character. 1916. No. 93 (648). P. 148-154.
Taylor G.I. Stability of a viscous liquid contained between two rotating cylinders // Philosophical Transactions of the Royal Society. 1923. V. 233. P. 298-343. doi: 10.1098/RSTA.1923.0008
Taylor G.I. Fluid friction between rotating cylinders I - Torque measurements // Proceedings of the Royal Society of London. 1933. V. 157. P. 546-564. doi: 10.1098/rspa.1936.0215
Von Lavante E., Yao, J. Numerical investigation of turbulent swirling flows in axisymmetric internal flow configurations // Flow Measurement and Instrumentation. 2012. V. 25. P. 63-68.
Panahandehgar S. CFD Study of Taylor-Like Vortices in Swirling Flows // Dissertations and Theses. 2019. 452. URL: https://commons.erau.edu/edt/452
Mulligan S., De Cesare G., Casserly J., Sherlock R. Understanding turbulent free surface vortex flows using a Taylor-Couette flow analogy // Scientific Reports. 2018. doi: 10.1038/s41598-017-16950-w
Tuckerman L.S. Taylor vortices versus Taylor columns //j. Fluid Mech. 2014. V. 750. P. 1-4.
Bai Y. Study of viscoelastic instabily in Taylor-Couette system as an analog of the magnetorotational instability : PhD dissertation. Universite du Havre, 2015.
Mahloul M., Mahamdia A., Kristiawan M. The spherical Taylor-Couette flow // European J. Mech B/Fluids. 2016. V. 59. P. 1-6. URL: https://doi.org/10.1016/j.euromechfu.2016.04.002
Burin M.J., Czarnocki C.J. Subcritical transition and spiral turbulence in circular Couette flow // Journal of Fluid Mechanics. 2012. V. 709. P. 106-122.
Shvab A.V., Popp M.Yu. Modeling of the laminar swirling flow in a vortex chamber // Tomsk State University Journal of Mathematics and Mechanics. 2014. No. 2 (28). P. 90-97.
Турубаев Р.Р., Шваб А.В. Численное исследование аэродинамики закрученного потока в вихревой камере комбинированного пневматического аппарата // Вестник Томского государственного университета. Математика и механика. 2017. № 47. С. 87-98. doi: 10.17223/ 19988621/47/9
Robertson J.M. On turbulent plane Couette flow // Proc. 6th Midwestern Conf. Fluid Mech. Univ. Texas. Austin. 1959. P. 169-182.
El Telbany M.M., Reynolds A.J. The structure of turbulent plane Couette flow // Journal of Fluids Engineering. 1982. V. 104. P. 367-372. doi: 10.1115/1.3241853
Ostilla-Monico R., Huisman S.G., Jannink T.J.G., Van Gils D.P.M., Verzicco R., Grossmann S., Sun C., Lohse D. Optimal Taylor_Couette flow: radius ratio dependence // Journal of Fluid Mechanics. 2014. V. 747. P. 1-29. doi: 10.1017/jfm.2014.134
Устименко Б.П. Процессы турбулентного переноса во вращающихся течениях. Алма-Ата : Наука, 1977. 228 с.
Bjorclund I.S. Heat transfer between concentric rotating cylinders // Journal of Heat Transfer. 1959. V. 81. P. 175-186.
Greidanus A.J., Delfos R., Tokgoz S., Westerweel J. Turbulent Taylor-Couette flow over riblets: drag reduction and the effect of bulk fluid rotation // Experiments in Fluids. 2015. V. 56. Art. 107. doi: 10.1007/s00348-015-1978-7
Ravelet F., Delfos R, Westerweel J. Influence of global rotation and Reynolds number on the large-scale features of a turbulent Taylor-Couette flow // Physics of fluids. 2010. V. 22. Art. 055103. doi: 10.1063/1.3392773