Pressure calculation for a fluid flowing in a plane wedge-shaped layer with account for inertial forces
The Reynolds equations are solved with account for inertial forces in a plane wedge-shaped layer using the Slezkin-Targ method. The analytical expressions determining the dimensionless longitudinal velocity, hydrodynamic pressure, and total pressure force as functions of the lubricating Reynolds number and dimensionless parameter of the problem are obtained. A new method for solving the Reynolds equations is proposed accounting for inertial forces and avoiding averaging the inertial terms with respect to the gap height. The numerical analysis of the proposed method shows that in the first and second approximations, the deviations for the total hydrodynamic pressure force in a plane wedge-shaped layer differ little from each other in the considered range of the lubricating Reynolds number for varying dimensionless parameter of the problem, but exceed the deviation obtained using the Slezkin-Targ method. The coincidence of the first approximation with the second one gives ground to believe that the proposed method is more accurate for calculating the total hydrodynamic pressure force in the fluid flow occurring in a plane wedge-shaped layer.
Keywords
viscous fluid,
wedge-shaped layer,
inertial forces,
hydrodynamic pressure,
thin gapAuthors
Kaurov Pavel V. | Saint Petersburg State University of Industrial Technology and Design | pucmo@mail.ru |
Всего: 1
References
Слёзкин Н.А. Динамика вязкой несжимаемой жидкости. М. : ГИТТЛ, 1955. 521 с.
Pozrikidis C. Fluid Dynamics. Theory, Computation, and Numerical Simulation. 3th ed. New York : Springer, 2017. 912 p. doi: 10.1007/978-1-4899-7991-9
Hutterr K., Wang Y. Fluid and Thermodynamics. New York : Springer, 2016. V. 1: Basic Fluid Mechanics. 652 p. doi: 10.1007/978-3-319-33633-6
Deng X., Watson C. Lubricant Inertia in Water Lubricated Bearings // Proceedings of the 29th Symposium on Fluid Machinery. 2017. P. 1-8. doi: 10.1115/FEDSM2017-69110
Javorova J.G. On the method of averaged inertia at hydrodynamic lubrication with fluid inertia effects: a review // Вестник Северо-Казахстанского Университета им. М. Козыбаева. Сер. Технические науки. 2017. Т. 3, № 36. С. 5-10.
Singh U.P. Effects of surface roughness and supply inertia on steady performance of hydro static thrust bearings lubricated with non-newtonian fluids // Journal of Mechanical Engineering. 2021. V. 71 (2). P. 317-328. doi: 10.2478/scjme-2021-0038.
Ghosh K.C., Mazumder S.K. Steady State Performance Characteristics of Isoviscous Finite Flexible Oil Journal Bearings Including Fluid Inertia Effect // International Journal of Engineering Research & Technology. 2017. V. 6 (7). P. 318-326. doi: 10.17577/IJERTV6IS070223
Tieshu F., Sina H. The effect of lubricant inertia on fluid cavitation for high-speed squeeze film dampers // Journal of Vibroengineering. 2017. V. 19 (8). P. 6122-6134. doi: 10.21595/jve.2017.19314
Sina H., Kamran B. A Study of Lubricant Inertia Effects for Squeeze Film Dampers Incorporated into High-Speed Turbomachinery // Lubricants. 2017. V. 5 (4). P. 1-29. doi: 10.3390/lubricants5040043
Singh U.P., Sinha P. Analysis of hydrostatic rough thrust bearing lubricated with Rabinowitsch fluid considering fluid inertia in supply region // Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 2020. V. 235 (2). P. 386395. doi: 10.1177/1350650120945887
Walicka A., Jurczak P. Influence of total inertia effects in a thrust curvilinear bearing lubricated with Newtonian Lubricants // Int. J. of Applied Mechanics and Engineering. 2017. V. 22 (4). P. 1045-1058. doi: 10.1515/ijame-2017-0067
Борисевич В.Д., Потанин Е.П. Использование преобразования Дородницына для анализа тепло- и массопереноса во вращающихся потоках // Прикладная математика и механика. 2021. T. 85, № 6. С. 758-771. doi: 10.31857/S0032823521060035
Ахвердиев К.С., Болгова Е.А. Гидродинамический расчет клиновидной системы «ползун-направляющая», работающей на сжимаемом смазочном материале в условиях наличия расплава на поверхности направляющей // Омский научный вестник. 2021. T. 2, № 176. С. 10-14. doi: 10.25206/1813-8225-2021-176-10-14
Мукутадзе М.А., Хасьянова Д.У. Гидродинамическая модель клиновидной опоры скольжения с легкоплавким металлическим покрытием // Проблемы машиностроения и надежности машин. 2020. № 4. С. 51-58. doi: 10.31857/S0235711920040100