On linearization of hyperbolic equations with integral load in the main part using an a priori estimate of their solutions | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 80. DOI: 10.17223/19988621/80/2

On linearization of hyperbolic equations with integral load in the main part using an a priori estimate of their solutions

A priori estimates are established for solutions of one-dimensional inhomogeneous hyperbolic equations with an integral load in the main part, which has the form a(s) = sp, for p = 1, 0.5 and -1, with inhomogeneous initial and homogeneous boundary conditions. Here s is the integral over the space variable of the square of the modulus of the derivative of the solution of the equation with respect to x. Examples of linearization of loaded equations by substituting the right-hand sides of the estimates for a(s) are given.

Download file
Counter downloads: 40

Keywords

hyperbolic equation, integral load, a priori estimation, linearization

Authors

NameOrganizationE-mail
Boziev Oleg L.Kabardino-Balkarian State University; Kabardino-Balkarian Science Center of the Russian Academy of Sciencesboziev@yandex.ru
Всего: 1

References

Бернштейн С.Н. Об одном классе функциональных уравнений с частными производ ными // Известия АН СССР. Сер. математическая. 1940. Вып. 1. С. 17-26.
Woinowsky-Krieger S. The effect of axial forces on the vibrations of hinged bars //j. Appl. Mech. 1950. № 17. P. 35-36.
Dickey R.W. Infinite systems of nonlinear oscillation equations related to the string // Proc. Amer. Math. Soc. 1969. № 23. P. 459-468.
Crippa H.R. On local solutions of some mildly degenerate Hyperbolic equations // Nonlinear Analysis: Theory, Methods & Applications. 1993. V. 21 (8). P. 565-574.
Frota C.L., Medeiros L.A., Vicente A. Wave equation in domains with nonlocally reacting boundary // Differential and Integral Equations. 2011. V. 24 (11/12). P. 1001-1020.
Похожаев С.И. Об одном классе квазилинейных гиперболических уравнений // Математичсеский сборник. 1975. Т. 96 (138), № 1. С. 152-166.
Похожаев С.И. Об одном квазилинейном гиперболическом уравнении Кирхгофа // Дифференциальные уравнения. 1985. Т. 21, № 1. С. 101-108.
Nishihara K. Exponential decay of solutions of some quasilinear hyperbolic equations with linear damping // Nonlinear Analysis: Theory, Methods & Applications. 1984. V. 8 (6). P. 623-636.
Ngoc L.T.P., Long N.T. Linear Approximation and Asymptotic Expansion of Solutions in Many Small Parameters for a Nonlinear Kirchhoff Wave Equation with Mixed Nonhomogeneous Conditions // Acta Appl Math. 2010. V. 112. P. 137-169. doi: 10.1007/s10440-009-9555-9
Ono K. Global solvability for mildly degenerate Kirchhoff type dissipative wave equations in Bounded Domains //j. Math. Tokushima Univ. 2021. V. 55. P. 11-18.
Бозиев О.Л. Приближенное решение нагруженного гиперболического уравнения с однородными краевыми условиями // Вестник Южноуральского государственного университета. Сер. Математика, физика, механика. 2016. Т. 8, № 2. С. 14-18. doi: 10.14529/mmph160202
Бозиев О.Л. Решение нелинейного гиперболического уравнения приближенно-аналитическим методом // Вестник Томского государственного университета. Математика и механика. 2018. № 51. С. 5-14. doi: 10.17223/19988621/51/1
Филатов А.Н., Шарова Л.В. Интегральные неравенства и теория нелинейных колебаний. М. : Наука, 1976. 151 с.
 On linearization of hyperbolic equations with integral load in the main part using an a priori estimate of their solutions | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 80. DOI: 10.17223/19988621/80/2

On linearization of hyperbolic equations with integral load in the main part using an a priori estimate of their solutions | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 80. DOI: 10.17223/19988621/80/2

Download full-text version
Counter downloads: 167