On cuts of the quotient field of a ring of formal power series | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2023. № 83. DOI: 10.17223/19988621/83/1

On cuts of the quotient field of a ring of formal power series

In studies related to the classification of real-closed fields, fields of formal power series with a multiplicative divisible group of Archimedean classes are essentially used. Consider a linearly ordered Abelian divisible group G = G(L,Q), which consists of words with generators from a linearly ordered set L similar to the ordinal ω1 and rational exponents. The article deals with the properties of sections of subfields of the field of bounded formal power series R[[G,ℵ1]]. For all ξi ∈ L we set ti =ξi-1. Consider an infinite strictly decreasing sequence {tγ}γ∈Г, where Г⊆ ω1 \ {1} is an arbitrary infinite set. Series of the form x = ∑rγ tγ ∈ R[[G]], where rγ ≠ 0 for all γ ∈ Г, i.e. supp(х) = {tγ | γ ∈ Г} , we will call series of the form (*). We prove that series of the form (*) for rγ > 0 for all γ ∈ Г generate in the field qfR[[G,ℵ0 ]] = K symmetric non-fundamental sections of confinality (ℵ0,ℵ0), in the real closure qfR[[G,ℵ0 ] ] = K series (*) generate symmetric sections. Let H be the least by inclusion real closed subfield of the field R[[G,ℵ1]] containing K and all truncations of the series x ω1 = ∑ 1•tγ. Then K ≠ H and the elements of the real closure of the simple transcendental extension H(хω1) that do not belong to H generate symmetric sections of the type (ℵ1,ℵ1) in the field H.

Download file
Counter downloads: 14

Keywords

divisible totally ordered Abelian group, real closed field, field of bounded formal (generalized) power series, symmetric cut (non-ball cut), cofinality of a cut, fundamental cut (Scott cut), quotient field

Authors

NameOrganizationE-mail
Galanova Nataliya Yu.Tomsk State Universitygalanova@math.tsu.ru
Всего: 1

References

Фукс Л. Частично упорядоченные алгебраические системы. М.: Мир, 1965.
Бурбаки Н. Алгебра. Многочлены и поля. Упорядоченные группы: пер. с фр. М.: Мир, 1965.
Dales H.J., Woodin H. Super-real fields. Oxford: Clarendon Press, 1996.
Галанова Н.Ю. Симметрия сечений в полях формальных степенных рядов и нестан дартной вещественной прямой // Алгебра и логика. 2003. Т. 42, № 1. С. 26-36.
Кокорин А.И., Копытов В.М. Линейно упорядоченные группы. М.: Наука, 1972.
Kuhlmann F.-V. Selected methods for the classification of cuts and their applications // Pro ceedings of the 5th Joint Conferences on Algebra, Logic and Number Theory, June 24-29. 2018. Bedlewo. Banach Center Publications, 2020. V. 121. P. 85-106.
Пестов Г.Г. К теории сечений в упорядоченных полях // Сибирский математический журнал. 2001. Т. 42, № 6. С. 1213-1456.
Галанова Н.Ю., Пестов Г.Г. Симметрия сечений в полях формальных степенных рядов // Алгебра и логика. 2008. Т. 47, № 2. С. 174-185.
Galanova N.Yu. Symmetric and asymmetric gaps in some fields of formal power series // Serdica Math. 2004. V. 30. P. 495-504.
Galanova N.Yu. An investigation of the fields of bounded formal power series by means of theory of cuts // Acta Appl. Math. 2005. V. 85. P. 121-126.
Shelah S. Quite complete real closed fields // Israel Journal of Mathematics. 2004. V. 142. P. 261-272.
Галанова Н.Ю. Линейно упорядоченные поля с симметричными сечениями // Вестник Томского государственного университета. Математика и механика. 2017. № 46. С. 1420.
Галанова Н.Ю. О симметричных сечениях одного вещественно замкнутого поля // Вестник Томского государственного университета. Математика и механика. 2018. № 53. С. 5-15.
 On cuts of the quotient field of a ring of formal power series | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2023. № 83. DOI: 10.17223/19988621/83/1

On cuts of the quotient field of a ring of formal power series | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2023. № 83. DOI: 10.17223/19988621/83/1

Download full-text version
Counter downloads: 174