On the box dimension of subsets of a metric compact space | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2023. № 83. DOI: 10.17223/19988621/83/3

On the box dimension of subsets of a metric compact space

The question of possible values of the lower capacity dimension dimB of subsets of the metric compact set X is considered. The concept of dimension f dimBX is introduced, which characterizes the asymptotics of the lower capacity dimension of closed ε-neighborhoods of finite subsets of the compact set X for ε → 0 . For a wide class of metric compact sets, the dimension f dimBX is the same as dimBX . The following theorem is proved: for any non-negative number r < f dimBX there exists a closed subset Zr ⊂ X such that dimBZr = r.

Download file
Counter downloads: 3

Keywords

metric compact space, capacitarian dimension, quantization dimension, intermediate value theorem for the capacitarian dimension

Authors

NameOrganizationE-mail
Ivanov Aleksandr V.Karelian Scientific Center of Russian Academy of Sciencesalvlivanov@krc.karelia.ru
Всего: 1

References

Федорчук В.В. Бикомпакты без промежуточных размерностей // Доклады АН СССР. 1973. Т. 213, № 4. С. 795-797.
Иванов А.В. О множестве значений размерности квантования вероятностных мер на метрическом компакте // Сибирский математический журнал. 2022. Т. 63, № 5. С. 10741080.
Ivanov A.V. On quantization dimensions of idempotent probability measures // Topology and its Applications. 2022. Vol. 306 (1). Art. 107931.
Песин Я.Б. Теория размерности и динамические системы: современный взгляд и при ложения. Москва; Ижевск: Ин-т компьютерных исслед., 2013. 404 с.
 On the box dimension of subsets of a metric compact space | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2023. № 83. DOI: 10.17223/19988621/83/3

On the box dimension of subsets of a metric compact space | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2023. № 83. DOI: 10.17223/19988621/83/3

Download full-text version
Counter downloads: 174