Effect of surfactant on bubble rising velocity in viscous liquid | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2023. № 84. DOI: 10.17223/19988621/84/7

Effect of surfactant on bubble rising velocity in viscous liquid

This paper presents a study of the rising velocity of a single gas bubble in a viscous liquid with a dissolved surfactant and the characteristics of hydrodynamic and diffusion processes on the free surface under conditions of dominance of viscous friction forces over gravitational forces. The original computational method accounting for the surface tension forces and the Marangoni effect caused by the surfactant concentration gradient along the boundary is presented. The mathematical formulation of the problem includes the equations of motion, continuity, and convective diffusion. The boundary conditions on the free surface are written with account for the discontinuity of shear and normal stresses. The surfactant transport on the surface is described in accordance with the Langmuir model. The free surface motion is carried out in compliance with the kinematic condition. The approach is based on the simultaneous use of the finite volume method and the method of invariants, which allows one to explicitly identify a free surface with valid natural boundary conditions. The effect of concentration of surfactants on the characteristics of hydrodynamic and diffusion processes is demonstrated.

Download file
Counter downloads: 7

Keywords

gas bubble, viscous liquid, surfactant, rising velocity, numerical simulation, parametric studies

Authors

NameOrganizationE-mail
Borzenko Evgeniy I.Tomsk State Universityborzenko@ftf.tsu.ru
Usanina Anna S.Tomsk State Universityusaninaanna@mail.ru
Shrager Gennadiy R.Tomsk State Universityshg@ftf.tsu.ru
Всего: 3

References

Левин В.Г. Физико-химическая гидродинамика. М.: Физматлит, 1959. 700 с.
Pang M., Jia M., Fei Y. Experimental study on effect of surfactant and solution property on bubble rising motion //j. Mol. Liq. 2023. V. 375. Art. 121390. 10.1016/j.molliq. 2023.121390.
Fayzi P., Bastani D., Lotfi M. A note on the synergistic effect of surfactants and nanoparticles on rising bubble hydrodynamics // Chem. Engineering & Processing: Process Intensification. 2020. V. 155. Art. 108068.
Luo Y. et al. Experimental Study of the Effect of the Surfactant on the Single Bubble Rising in Stagnant Surfactant Solutions and a Mathematical Model for the Bubble Motion // Ind. Eng. Chem. Res. 2022. V. 61 (26). P. 9514-9527.
Архипов В.А., Васенин И.М., Усанина А.С. Динамика всплытия пузырька в присутствии поверхностно-активных веществ // Известия Российской академии наук. Механика жидкости и газа. 2016. № 2. C. 142-151.
Fleckenstein S., Bothe D. Simplified modeling of the influence of surfactants on the rise of bubbles in VOF-simulations // Chem. Eng. Sci. 2013. V. 102. P. 514-523.
Pesci C. et al.Computational analysis of single rising bubbles influenced by soluble surfactant //j. Fluid Mech. 2018. V. 856. P. 709-763.
Matsumoto Y., Uda T., Takagi S. The Effect of Surfactant on Rising Bubbles // IUTAM Symposium on Computational Approaches to Multiphase Flow. Dordrecht: Springer Netherlands, 2004. P. 311-321.
He Z., Maldarelli C., Dagan Z. The size of stagnant caps of bulk soluble surfactant on the interfaces of translating fluid droplets //j. Colloid Interface Sci. 1991. V. 146 (2). P. 442451.
Kentheswaran K. et al. Direct numerical simulation of gas-liquid mass transfer around a spherical contaminated bubble in the stagnant-cap regime // Int. J. Heat Mass Transf. 2022. V. 198. Art. 123325.
Manikantan H., Squires T.M. Surfactant dynamics: hidden variables controlling fluid flows //j. Fluid Mech. 2020. V. 892. P. 1-115.
Якутенок В.А., Борзенко Е.И. Численное моделирование течений вязкой несжимаемой жидкости со свободной поверхностью на основе метода SIMPLE // Математическое моделирование. 2007. Т. 19, № 3. P. 52-58.
Patankar S.V. Numerical heat transfer and fluid flow. Hemisphere Pub. Corp., 1980. 197 p.
Васенин И.М., Сидонский О.Б., Шрагер Г.Р. Численное решение задачи о движении вязкой жидкости со свободной поверхностью // Доклады АН СССР. 1974. T. 217, № 2. P. 295-298.
Завьялов Ю.С., Квасов Б.И., Мирошниченко В.Л. Методы сплайн-функций. М.: Наука, 1980. 352 p.
Askar S.S., Karawia A.A. On Solving Pentadiagonal Linear Systems via Transformations // Math. Probl. Eng. 2015. V. 2015. Art. 232456. P. 1-9.
Bhaga D., Weber M.E. Bubbles in viscous liquids: shapes, wakes and velocities //j. Fluid Mech. 1981. V. 105 (1). P. 61-85.
 Effect of surfactant on bubble rising velocity in viscous liquid | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2023. № 84. DOI: 10.17223/19988621/84/7

Effect of surfactant on bubble rising velocity in viscous liquid | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2023. № 84. DOI: 10.17223/19988621/84/7

Download full-text version
Counter downloads: 230