On the generalization of some classes of close-to-convex and typically real functions | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2023. № 85. DOI: 10.17223/19988621/85/1

On the generalization of some classes of close-to-convex and typically real functions

The paper introduces the class C(λ, α, γ) = { f(z): | ((1 -λz 2)f '(z))1/γ - α |⩽ α }, 0 λ 1, 0 < γ 1, a > 1/2, almost convex order for functions, generalizing classes of functions with limited rotation (α →+∞ λ = 0) and functions convex of order y in the direction of the imaginary axis (α → +∞, λ = 1). For the class C(λ, α, γ) and its subclasses, unimprovable distortion theorems and exact convexity radii are found, and similar results are obtained in a class generalizing the class of typically real functions.

Download file
Counter downloads: 7

Keywords

geometric theory of functions, single-leaf functions, estimates of analytic functions, typically real functions, radii of convexity

Authors

NameOrganizationE-mail
Maiyer Fedor F.Kostanay Regional University named after A. Baitursynovmaiyer@mail.ru
Tastanov Meyrambek G.Kostanay Regional University named after A. Baitursynovtastao@mail.ru
Utemissova Anar A.Kostanay Regional University named after A. Baitursynovanar_utemisova@mail.ru
Baimankulov Abdykarim T.Kostanay Regional University named after A. Baitursynovbat_56@mail.ru
Всего: 4

References

Ozaki S. On the theory of multivalent functions // Sci. Rep. Tokyo Bunrika Daigaku, Sect. A. Math. Phys. Chem. 1935. V. 2. P. 167-188.
Kaplan W. Close-to-convex schlicht functions // Michigan Math. J. 1952. № 1 (2). P. 169-185.
Reade M. The coefficients of close-to-convex functions // Duke Math. J. 1956. V. 23 (3). P. 459-462.
Renyi A. Some remarks on univalent functions // Ann. Univ. Mariae Curie-Sklodowska. Sec. A. 1959. V. 3. P. 111-121. URL: http://sci-gems.math.bas.bg:8080/jspui/bitstream/10525/ 2878/1/1959-111-121.pdf.
Bshouty D., Lyzzaik A. Univalent functions starlike with respect to a boundary point // Contemp. Math. 2005. V. 382. P. 83-87.
Robertson M.S. Analytic functions star-like in one direction // Amer. J. Math. 1936. V. 58 (3). P. 465-472.
Lecko A. Some subclasses of close-to-convex functions // Annales Polonici Mathematici. 1993. V. 58 (1). P. 53-64. URL: https://bibliotekanauki.pl/articles/1311892.
Noshiro K. On the theory of schlicht functions //j. Fac. Sci. Hokkaido Imp. Univ. Ser. I Math. 1934. V. 2 (3). P. 129-155.
Warschawski S.E. On the higher derivatives at the boundary in conformal mapping // Trans. Am. Math. Soc. 1935. V. 38 (2). P. 310-340.
Hengartner W., Schober G. Analytic functions close to mappings convex in one direction // Proc. Amer. Math. Soc. 1971. V. 28 (2). P. 519-524. URL: https://www.ams.org/journals/proc/1971-028-02/S0002-9939-1971-0277704-9/S0002-9939-1971-0277704-9.pdf.
MacGregor T. Functions whose derivative has a positive real part // Trans. Amer. Math. Soc. 1962. V. 104. P. 532-537.
Майер Ф.Ф. Геометрические свойства некоторых классов аналитических в круге функций, выпуклых в направлении мнимой оси // Вестник науки Костанайского государственного университета им. А. Байтурсынова. Сер. естественно-технических наук. 2002. Т. 6, № 2. С. 48-50. URL: https://nauka.kz/page.php?page_id=372&lang=3&page=5931.
Rogosinski W. Uber Positive Harmonische Entwicklungen und typisch-reelle Potenzreihen // Math. Zeitschr. 1932. V. 35 (1). P. 93-121.
Голузин Г.М. О типично вещественных функциях // Математический сборник. Новая сер. 1950. Т. 27 (69), № 2. С. 201-218. URL: https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=sm&paperid=5913&option_lang=eng.
Гельфер С.А. Типично вещественные функции // Математический сборник. Новая сер. 1964. Т. 64 (106), № 2. С. 171-184. URL: https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=sm&paperid=4441&option_lang=rus.
Митюк И.П. Оценки в некоторых классах аналитических функций // Метрические вопросы теории функций. Киев: Наукова думка, 1980. С. 90-99.
Майер Ф. Ф., Тастанов М.Г., Утемисова А.А., Козловский С.А. Точные оценки и радиусы выпуклости некоторых классов аналитических функций // Вестник ЮУрГУ. Сер. Математика. Механика. Физика. 2022. Т. 14, № 1. С. 42-49.
Libera R.J. Some radius of convexity problems // Duke Math. J. 1964. V. 31(1). P. 143-158.
 On the generalization of some classes of close-to-convex and typically real functions | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2023. № 85. DOI: 10.17223/19988621/85/1

On the generalization of some classes of close-to-convex and typically real functions | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2023. № 85. DOI: 10.17223/19988621/85/1

Download full-text version
Counter downloads: 195