Multi-groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 87. DOI: 10.17223/19988621/87/4

Multi-groups

In the present paper we define homogeneous algebraic systems. Particular cases of these systems are semigroup (monoid, group) systems. These algebraic systems were studied by J. Loday, A. Zhuchok, T. Pirashvili, and N. Koreshkov. Quandle systems were introduced and studied by V. Bardakov, D. Fedoseev, and V. Turaev. We construct some group systems on the set of square matrices over a field k. Also, we define rack systems on the set V x G , where V is a vector space of dimension n over k and G is a subgroup of GLn(k). Finally, we find the connection between skew braces and dimonoids.

Download file
Counter downloads: 14

Keywords

algebraic system, homogeneous algebraic system, groupoid, semigroup, monoid, group, semigroup system, quandle system, dimonoid, skew brace, multi-group, multi-quandle

Authors

NameOrganizationE-mail
Kozlovskaya Tatyana A.Tomsk State Universityt.kozlovskaya@math.tsu.ru
Всего: 1

References

Rump W. (2007) Braces, radical rings and the quantum Yang-Baxter equations, Journal of Algebra. 307. pp. 153-170.
Guarnieri L., Vendramin L. (2017) Skew braces and the Yang-Baxter equation, Mathematics of Computation. 86(307). pp. 2519-2534.
Bardakov V.G., Neshchadim M.V., Yadav M.K. (2023) Symmetric skew braces and brace systems. Forum Mathematicum. 35(3).
Loday J.-L. (2001) Dialgebras. In: Dialgebras and Related Operads. Lecture Notes in Mathe matics. 1763. pp. 7-66. Berlin: Springer.
Zhuchok A.V. (2011) Free dimonoids. Ukrainian Mathematical Journal. 63. pp. 196-208.
Zhuchok A.V. (2013) Free products of dimonoids. Quasigroups and Related Systems. 21(2). pp. 273-278.
Pirashvili T. (2003) Sets with two associative operations. Central European Journal of Mathe matics. 1(2). pp. 169-183.
Koreshkov N.A. (2008) n-tuple algebras of associative type.Russian Mathematics (Iz. VUZ). 52(12). pp. 28-35.
Zhuchok A.V. (2018) Free n-tuple Semigroups. Mathematical Notes. 103(5). pp. 737-744.
Bardakov V.G., Fedoseev D.A. (2022) Multiplication of quandle structures. arXiv:2204.12571.
Turaev V. (2022) Multi-quandles of topological pairs. arXiv:2205.00951.
Buchstaber V.M., Novikov S.P. (1971) Formal groups, power systems and Adams operators. Mathematics of the USSR-Sbornik. 84 (126). pp. 81-118.
Buchstaber V.M. (2006) n-valued groups: theory and applications. Moscow Mathematical Journal. 6(1). pp. 57-84.
Bardakov V.G., Kozlovskaya T.A., Talalaev D.V. n-valued quandles and associated bialgebras, in progress.
Loday J.-L. (1995) Algebres ayant deux operations associatives (dialgebres).Comptes Rendus de I'Academie des Sciences - Series I - Mathematics. 321(2). pp. 141-146.
Matveev S. (1984) Distributive groupoids in knot theory, Mathematics of the USSR-Sbornik. 47(1). pp. 73-83.
Joyce D. (1982) A classifying invariant of knots, the knot quandle. Journal of Pure and Applied Algebra. 23(1). pp. 37-65.
Bardakov V.G., Simonov A.A. (2013) Rings and groups of matrices with a nonstandard product. Siberian Mathematical Journal. 54(3). pp. 393-405.
Kinyon M.K. (2007) Leibniz algebras, Lie racks, and digroups. Journal of Lie Theory. 17(1). pp. 99-114.
 Multi-groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 87. DOI: 10.17223/19988621/87/4

Multi-groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 87. DOI: 10.17223/19988621/87/4

Download full-text version
Counter downloads: 194