Some properties of topological hedgehogs | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 88. DOI: 10.17223/19988621/88/4

Some properties of topological hedgehogs

The topological spaces called Euclidean hedgehogs are considered. These are subspaces of the Euclidean spaces Rn with the following property: together with each of their points, they contain the entire segment connecting the given point with the point of origin. It is proved that for all n 2 there exist pairwise non-homeomorphic Euclidean hedgehogs in Rn. It is also proved that for every countable Euclidean hedgehog there exists a flat hedgehog homeomorphic to it. We also consider two topological spaces: the quasimetric hedgehog and the quotient hedgehog, which have the following cardinal and hereditary invariants: weight, character, density, spread, extent, cellularity, tightness, number of open sets, and Lindelof number. Finally, sequential hedgehogs are considered that are topologically embedded in function spaces. Criteria are given for the topological embedding of sequential hedgehogs in the space of continuous functions and in the space of Baire functions.

Download file
Counter downloads: 11

Keywords

Euclidean hedgehog, cardinal invariants, quasi-metric, factor topology, Sorgenfrey line, metric hedgehog, sequential hedgehog, space of continuous functions, space of Baire functions, topological embedding

Authors

NameOrganizationE-mail
Lyakhovets Daniil Yu.N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Scienceszoy01111@gmail.com
Osipov Alexander V.N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences; Ural Federal Universityoab@list.ru
Всего: 2

References

Энгелькинг Р. Общая топология: учебник. М.: Мир, 1986. 752 с.
Handbook of set-theoretic topology: handbook / K. Kunen, J.E. Vaughan (eds.) Amsterdam; New York; Oxford: Elsevier Science Publishers, 1984. 1273 p.
Архангельский А.В., Пономарев В.И. Основы общей топологии в задачах и упражнениях: учебник. М.: Наука, 1974. 424 с.
Hurewicz W. Uber eine verallgemeinerung des Borelschen Theorems // Mathematische Zeitschrift. 1925. V. 24. S. 401-421.
Arhangel'skii A.V. Hurewicz spaces, analytic sets and fan tightness of function spaces // Sov. Math. Dokl. 1986. V. 33. P. 396-399.
Arhangel'skii A.V. Projective о-compactness, nu-caliber, and Cp-spaces // Topology and its Applications. 2000. V. 104. P. 13-26.
Sakai M. The projective Menger property and an embedding of Sm into function spaces // Topology and its Applications. 2017. V. 220. P. 118-130.
Osipov A. V. Projective versions of the properties in the Scheepers Diagram // Topology and its Applications. 2020. V. 278. Art. 107232.
Bonanzinga M., Cammaroto F., Matveev M. Projective versions of selection principles // Topology and its Applications. 2010. V. 157. P. 874-893.
Scheepers M., Tsaban B. The combinatorics of Borel covers // Topology and its Applications. 2002. V. 121. P. 357-382.
Osipov A. V. Classification of selectors for sequences of dense sets of Baire functions // Topology and its Applications. 2019. V. 258. P. 251-267.
Just W., Miller A.W., Scheepers M., Szeptycki P.J. The combinatorics of open covers II // Topology and its Applications. 1996. V. 73. P. 241-266.
 Some properties of topological hedgehogs | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 88. DOI: 10.17223/19988621/88/4

Some properties of topological hedgehogs | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 88. DOI: 10.17223/19988621/88/4

Download full-text version
Counter downloads: 142