Effect of the parameters of inclusions with shells on the stress-strain state of a polymer matrix in a composite material reinforced with a dispersed filler
An increase in the wettability of dispersed particles with a polymer is one of the main tasks when creating polymer composite materials reinforced with a dispersed filler. Wettability can be increased due to the polymer shells provided on the surfaces of the particles. By varying the polymer shell thickness of the filler particles, the mechanical properties of the polymer composite materials can be controlled. In a polymer matrix with partial crystallinity, the stress-strain states can be induced by the orthotropy of macromolecules near the filler particles. The main reasons for the stress-strain states are the differences in the mechanical properties of the polymer and filler particles and the technological parameters. In this paper, mathematical modeling results for the occurrence of internal residual stresses are obtained using a three-phase structural model of polymer composite materials. It is shown that these technological stress-strain states are independent of the orientation of polymer molecules to the filler particles in crystallites, and they can decrease the mechanical properties of the entire composition. Thus, the effect of submicron filler particles with polymer shells on the mechanical properties of the polymer composition may vary depending on the amorphous or crystalline structure of the polymer matrix.
Keywords
polymer reinforced with a dispersed filler,
stress-strain states,
polymer composite materialAuthors
Sidorov Igor N. | Kazan National Research Technical University named after A.N. Tupolev - KAI | INSidorov@kai.ru |
Kuklin Vladimir A. | Kazan National Research Technical University named after A.N. Tupolev - KAI | iamkvova@yandex.ru |
Enskaya Anna I. | Kazan National Research Technical University named after A.N. Tupolev - KAI | AIEnskaya@kai.ru |
Danilaev Maksim P. | Kazan National Research Technical University named after A.N. Tupolev - KAI | danilaev@mail.ru |
Всего: 4
References
Casale A. Polymer stress reactions. Elsevier, 2012.
Christensen R.M. Mechanics of composite materials. Courier Corporation, 2012.
Тарлаковский Д.В., Федотенков Г.В. Общие соотношения и вариационные принципы математической теории упругости. М.: МАИ, 2009. 112 с.
Седов Л.И. Механика сплошной среды: учебник для вузов. СПб.: Лань, 2004. Т. 1. 528 с.
Rahmanian V., Galeski A. Cavitation in strained polyethylene/nanographene nanocomposites // Polymer. 2021. V. 232 (6). P. 124158-124169.
Данилаев М.П., Карандашов С.А., Киямов А.Г., Клабуков М.А., Куклин В.А., Сидоров И.Н., Энская А.И. Формирование и характер остаточных напряжений в дисперсно-наполненных полимерных композитах с частично кристаллической структурой // Физическая мезомеханика. 2022. Т. 25 (2). C. 67-76.
Анисимова М.А., Князева А.Г. Оценка напряжений и деформаций в процессе формирования переходного слоя между частицей и матрицей // Вестник Томского государственного университета. Математика и механика. 2020. № 63. С. 60-71.
Zaaba N.F., Jaafar M. A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation // Polymer Engineering & Science. 2020. V. 60 (9). P. 2061-2075.
Marra A., Silvestre C., Duraccio D., Cimmino S. Polylactic acid/zinc oxide biocomposite films for food packaging application // International journal of biological macromolecules. 2016. V. 88. P. 254-262.
Danilaev M.P., Drobyshev S.V., Klabukov M.A., Kuklin V.A., Mironova D.A. Formation of a Polymer Shell of a Given Thickness on Surfaces of Submicronic Particles // Nanobiotechnology Reports. 2021. V. 16 (2). P. 162-166.
Akhmadeev A.A., Bogoslov E.A., Danilaev M.P., Klabukov M.A., Kuklin V.A. Influence of the Thickness of a Polymer Shell Applied to Surfaces of Submicron Filler Particles on the Properties of Polymer Compositions // Mechanics of Composite Materials. 2020. V. 56. P. 241-248.
Wyszkowska J., Borowik A., Kucharski M., Kucharski J. Effect of cadmium, copper and zinc on plants, soil microorganisms and soil enzymes // Journal of Elementology. 2013. V. 18 (4). P. 769-796.
Vasyukova I.A., Zakharova O.V., Chaika V.V. Toxic Effect ofMetal-Based Nanomaterials on Representatives of Marine Ecosystems: A Review // Nanobiotechnology Reports. 2021. V. 16 (2). P. 138-154.
Hong J.I., Winberg P., Schadler L.S., Siegel R.W. Dielectric properties of zinc oxide/low density polyethylene nanocomposites // Materials Letters. 2005. V. 59 (4). P. 473-476.
Chauhan S.R., Thakur S. Effects of particle size, particle loading and sliding distance on the friction and wear properties of cenosphere particulate filled vinylester composites // Materials & Design. 2013. V. 51. P. 398-408.
Li Y., Zhang L., Li C. Highly transparent and scratch resistant polysiloxane coatings containing silica nanoparticles // Journal of colloid and interface science. 2020. V. 559. P. 273-281.
Rosciszewski P., Lukasiak J., Dorosz A., Galinski J., Szponar M. Biodegradation of polyorganosiloxanes // Macromolecular Symposia. 1998. V. 130 (1). P. 337-346. 10.1002/ masy.19981300129.
Rybak A., Malinowski L., Adamus-Wlodarczyk A., Ulanski P. TheimaUy conductive shape memory polymer composites filled with boron nitride for heat management in electrical insulation // Polymers. 2021. V. 13 (13). P. 2161-2172.
Mittal V. Functional polymer nanocomposites with graphene: a review // Macromolecular Materials and Engineering. 2014. V. 299 (8). P. 906-931.