The driving function of the Loewner equation generating slit, emanating from a zero corner | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 94. DOI: 10.17223/19988621/94/2

The driving function of the Loewner equation generating slit, emanating from a zero corner

We construct a family of mappings ƒ = ƒ (z, τ) , τ∈[0, τ0]. When τ is fixed, the mapping ƒ translates the half-plane into a strip with a cut (the length of the cut depends on the parameter τ) along the ray γ going to infinity. The cut forms zero angles with the strip boundary. The decomposition of the governing function λ(τ) of the Loewner equation at the point τ = 0, τ > 0 generating such a family of regions is obtained. We formulate a hypothesis about the behavior of the control function generating a cut emerging from the zero corner of some single-connected region along the arc of a circle. The hypothesis is tested on one particular case.

Download file
Counter downloads: 10

Keywords

the Loewner differential equation, conformal mapping, the Schwarz-Christoffel integral, accessory parameters

Authors

NameOrganizationE-mail
Karmushi MaherTomsk State Universitymaherkarmoushi1996@gmail.com
Kolesnikov Ivan A.Tomsk State Universityia.kolesnikov@mail.ru
Loboda Yulia A.Tomsk State Universityysenchurova@yandex.ru
Всего: 3

References

Lӧwner K. Untersuchungen uber schlichte konforme Abbildungen des Einheitskreises // Math. Ann. 1923. V. 89. P. 103-121. doi: 10.1007/BF01448091.
Александров И.А. Параметрические продолжения в теории однолистных функций. М.: Наука, 1976. 344 c.
Duren P.L. Univalent functions. New York: Springer-Verlag, 1983. 382 p.
Marshall D.E., Rohde S. The Loewner differential equation and slit mappings // J. Amer. Math. Soc. 2005. V. 18 (4). P. 763-778. doi: 10.1090/S0894-0347-05-00492-3.
Lind J. A sharp condition for the Loewner equation to generate slits // Ann. Acad. Sci. Fenn. Math. 2005. V. 30 (1). P. 143-158.
Prokhorov D., Vasil’ev A. Singular and tangent slit solutions to the Lowner equation // Anal. Math. Phys. 2009. P. 455-463. doi: 10.1007/978-3-7643-9906-1_23.
Wu H.-H., Jiang Y.-P., Dong X.-H. Perturbation of the tangential slit by conformal maps // J. Math. Anal. Appl. 2018. V. 464 (2). P. 1107-1118. doi: 10.1016/j.jmaa.2018.04.042.
Lau K.S., Wu H.H. On tangential slit solution of the Loewner equation // Ann. Acad. Sci. Fenn. Math. 2016. V. 41. P. 681-691. doi: 10.5186/aasfm.2016.4142.
Prokhorov D. Parametric Characteristics of High-Order Tangential Loewner’s Slits // Lobachevskii J Math. 2018. V. 39. P. 818-825. doi: 10.1134/S199508021806015X.
 The driving function of the Loewner equation generating slit, emanating from a zero corner | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 94. DOI: 10.17223/19988621/94/2

The driving function of the Loewner equation generating slit, emanating from a zero corner | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 94. DOI: 10.17223/19988621/94/2

Download full-text version
Counter downloads: 85