Dynamics of a cylindrical bubble with account for the contact line motion along a heterogeneous surface
The free and forced oscillations of a cylindrical gas bubble clamped between two rigid parallel plates and surrounded by a finite volume of incompressible liquid with a free surface in a homogeneous pulsating pressure field are considered. A model is proposed for describing the substrate surface heterogeneity through the wetting parameter (the Hocking parameter), which is defined as the proportionality coefficient between the contact line velocity and the contact angle deviation. Since only small-amplitude oscillations are considered, the surface heterogeneity is significant only in the vicinity of the contact line. Therefore, it is treated as a function of a single variable. Azimuthal oscillations arise due to the contact line motion along the heterogeneous surface. It is shown that the frequency of the radial oscillations of the bubble is governed by the gas pressure and the radius of the liquid’s outer surface. The specific type of surface inhomogeneity modifies the Hocking parameter by reducing its value, although the qualitative dependence of the frequencies and damping decrements on this parameter remains unchanged. The frequency of the volume oscillations depends on the gas pressure inside the bubble, which may coincide with the frequency of the bubble’s shape oscillations. At the intersection points, damping decrements exhibit local extrema. It is shown that external excitation induces only axisym-metric oscillations; however, surface inhomogeneity also gives rise to azimuthal modes, whose spectrum is determined by the nature of the inhomogeneity.
Keywords
gas bubble,
free oscillations,
forced oscillations,
contact line dynamics,
heterogeneous surfaceAuthors
| Alabuzhev Aleksey A. | Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences; Perm State University | alabuzhev@mail.ru |
Всего: 1
References
де Жен П.Ж. Смачивание: статика и динамика // Успехи физических наук. 1987. Т. 151, вып. 4. С. 619-681. doi: 0.3367/UFNr.0151.198704c.0619.
de Gennes G., Brochard-Wyart F., Quere D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. New York: Springer, 2004. 292 p. doi: 10.1007/978-0-387-21656-0.
Zhang L., Thiessen D.B. Capillary-wave scattering from an infinitesimal barrier and dissipation at dynamic contact lines // J. Fluid Mech. 2013. V. 719. P. 295-313. doi: 10.1017/jfm.2013.5.
Hocking L.M. The damping of capillary-gravity waves at a rigid boundary // J. Fluid Mech. 1987. V. 179. P. 253-266. doi: 10.1017/S0022112087001514.
Пономарева М.А., Якутенок В.А. Моделирование растекания капли вязкой жидкости в плос кой постановке при больших числах Бонда // Вестник Томского государственного университета. Математика и механика. 2007. № 1. С. 79-83.
Пономарева М.А., Шрагер Г.Р., Якутенок В.А. Использование уравнения Дюпре-Юнга для решения задачи о растекании жидкости при ограниченном смачивании // Вестник Томского государственного университета. Математика и механика. 2008. № 1 (2). С. 90-96.
Davis S.H. Moving contact lines and rivulet instabilities. Part 1. The static rivulet // J. Fluid Mech. 1980. V. 98. P. 225-242. doi: 10.1017/S0022112080000110.
Актершев С.П., Алексеенко С.В., Цвелодуб О.Ю. Теоретическое моделирование гидроди намики и теплопереноса в волновых пленках жидкости при сложных условиях течения (обзор) // Теплофизика и аэромеханика. 2022. № 1. С. 1-36. doi: 10.1134/S0869864322010012 (English version).
Fayzrakhmanova I.S., Straube A. V. Stick-slip dynamics of an oscillated sessile drop // Phys. Fluids. 2009. V. 21. Art. 072104. doi: 10.1063/1.3174446.
Fayzrakhmanova I.S., Straube A. V., Shklyaev S. Bubble dynamics atop an oscillating substrate: Interplay of compressibility and contact angle hysteresis // Phys. Fluids. 2011. V. 23. Art. 102105. doi: 10.1063/1.3650280.
Korobkin A.A., Pukhnachov V.V. Initial Stage of Water Impact // Annu. Rev. Fluid Mech. 1988. V. 20. P. 159-185. doi: 10.1146/annurev.fl.20.010188.001111.
Yarin A.L. Drop impact dynamics: Splashing, Spreading, Receding, Bouncings // Annu. Rev. Fluid Mech. 2006. V. 39. P. 159-192. doi: 10.1146/annurev.fluid.38.050304.092144.
Hicks P.D., Ermanyuk E.V., Gavrilov N.V., Purvis R. Air trapping at impact of a rigid sphere onto a liquid // J. Fluid Mech. 2012. V. 695. P. 310-320. doi: 10.1017/jfm.2012.20.
Kumar S. Liquid Transfer in Printing Processes: Liquid Bridges with Moving Contact Lines // Annu. Rev. Fluid Mech. 2015. V. 47. P. 67-94. doi: 10.1146/annurev-fluid-010814-014620.
Anna S.L. Droplets and bubbles in microfluidic devices // Annu. Rev. Fluid Mech. 2016. V. 48. P. 285-309. doi: 10.1146/annurev-fluid-122414-034425.
Bures L, Sato Y. On the modelling of the transition between contact-line and microlayer evaporation regimes in nucleate boiling // J. Fluid Mech. 2021. V. 916. A53. doi: 10.1017/jfm.2021.204.
Dussan V.E.B. On the spreading of liquids on solid surfaces: static and dynamic contact lines // Ann. Rev. Fluid Mech. 1979. V. 11. P. 371-400. doi: 10.1146/annurev.fl.11.010179.002103.
Ding H., Gilani M.N.H., Spelt P.D.M. Sliding, pinch-off and detachment of a droplet on a wall in shear flow // J. Fluid Mech. 2010. V. 644. P. 217-244. doi: 10.1615/10.1017/ S0022112009992217.
Воинов О.В. Гидродинамика смачивания // Известия АН СССР. Механика жидкости и газа. 1976. № 5. С. 76-84. doi: 10.1007/BF01012963 (English version).
Alabuzhev A.A. Oscillations and parametric instability of a cylindrical drop of a low-viscous liquid // Inter. J. Fluid Mech. Res. 2019. V. 46, is. 5. P. 441-457. doi: 10.1615/InterJLluid MechRes.2019025743.
Алабужев А.А., Пьянкова М.А. Параметрическая неустойчивость одиночной капли и ансамбля капель при круговых вибрациях // Вестник Пермского университета. Физика. 2022. № 3. C. 56-65. doi: 10.17072/1994-3598-2022-3-56-65.
Ting C.-L., Perlin M. Boundary conditions in the vicinity of the contact line at a vertically oscillating upright plate: an experimental investigation // J. Fluid Mech. 1995. V. 295. P. 263300. doi: 10.1017/S0022112095001960.
Shklyaev S., Straube A.V. Linear oscillations of a hemispherical bubble on a solid substrate // Phys. Fluids. 2008. V. 20. Art. 052102. doi: 10.1063/1.2918728.
Alabuzhev A.A., Kolupaev V.S. The effect of substrate surface on the dynamics of sessile drop under axisymmetric vibrations // Interfac. Phenom. Heat Transfer. 2021. V. 9, is. 1. P. 75-85. doi: 10.1615/INTERFACPHENOMHEATTRANSFER.2021035378.
Алабужев А.А., Любимов Д.В. Влияние динамики контактной линии на собственные колебания цилиндрической капли // Прикладная механика и техническая физика. 2007. Т. 48, № 5. С. 78-86. doi: 10.1007/s10808-007-0088-6.
Алабужев А.А. Поведение цилиндрического пузырька под действием вибраций // Вычислительная механика сплошных сред. 2014. Т. 7, № 2. С. 151-161. doi: 10.7242/1999-6691/2014.7.2.16.
Алабужев А.А., Кашина М.А. Влияние различия свойств поверхностей на осесимметричные колебания сжатой капли в переменном электрическом поле // Известия вузов. Радиофизика. 2018. Т. 61, № 8-9. С. 662-676. doi: 10.1007/s11141-019-09919-4 (English version).
Miles J.W. The capillary boundary layer for standing waves // J. Fluid Mech. 1991. V. 222. P. 197-205. doi: 10.1017/S0022112091001052.
Pyankova M.A., Alabuzhev A.A. Influence of the properties of the plate surface on the oscillations of the cramped drop // Phys. Fluids. 2022. V. 34. Art. 092015. doi: 10.1063/5.0101011.
Xia Y., Steen P.H. Moving contact-line mobility measured // J. Fluid Mech. 2018. V. 841. P. 767-783. doi: 10.1017/jfm.2018.105.
Xia Y., Steen P.H. Dissipation of oscillatory contact lines using resonant mode scanning // NPJ Microgravity. 2020. V. 6 (3). doi: 10.1038/s41526-019-0093-0.
Ludwicki J.M., Kern V.R., McCraney J. et al. Is contact-line mobility a material parameter? // NPJ Microgravity. 2022. V. 8 (6). doi: 10.1038/s41526-022-00190-y.
McCraney J., Ludwicki J., Bostwick J., Daniel S., Steen P. Coalescence-induced droplet spreading: Experiments aboard the International Space Station // Phys Fluids. 2022. V. 34. Art. 122110. doi: 10.1063/5.0125279.
Hocking L.M. Waves produced by a vertically oscillating plate // J. Fluid Mech. 1987. V. 179. P. 267-281. doi: 10.1017/S0022112087001526.
Alabuzhev A.A. Influence of surface properties on axisymmetrical oscillations of a cylindrical bubble // Interfac. Phenom. Heat Transfer. 2019. V. 7, is. 3. P. 255-268. doi: 10.1615/Interfac PhenomHeatTransfer.2019031147.
Лойцянский Л.Г. Механика жидкости и газа. М.: Дрофа, 2003. 840 с.
Алабужев А.А., Любимов Д.В. Влияние динамики контактной линии на колебания сжатой капли // Прикладная механика и техническая физика. 2012. Т. 53, № 1. С. 1-12. doi: 10.1134/S0021894412010026.
Алабужев А.А. Осесимметричные колебания цилиндрической капли с подвижной контактной линией // Прикладная механика и техническая физика. 2016. Т. 57, № 6. С. 5363. doi: 10.1134/S0021894416060079.