Stochastic model of dynamic relative increments stock price | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2011. № 2(14).

Stochastic model of dynamic relative increments stock price

In this paper, the process of relative increment of stock price is considered. The process isdescribed using the generalized Ito equation. Stochastic dynamics was described with Lukoilstock prices during the period of 18.04.2008 up to 17.04.2009, with intervals ƒƒ = 1 min, 5 min,10 min, 15 min, 30 min, and 60 min.

Download file
Counter downloads: 376

Keywords

Markov process, Wiener process, relative increments, volatility, Stochastic process, drift, марковский процесс, виннеровский процесс, относительные приращения, коэффициент сноса, волатильность, стохастический процесс

Authors

NameOrganizationE-mail
Tryasuchev Petr VladimirovichTomsk Polytechnic Universitypet3001@yandex.ru
Всего: 1

References

Wilmott P., Oztukel A. Uncertain parameters, an empirical stochastic colatility model and confidance limits // Int. J. Theor. Appl. Fin. 1998. V. 1. P. 175−198.
McNeil A.J., Frey R., Embrechts P. Quantitative Risk Management. Concepts, Techniques and Tools. Princeton, NJ: Princeton University Press, 2005.
Бухбиндер Г.Л., Чистилин К.М. Стохастическая динамика котировок акций РАО ЕЭС // Математическое моделирование. 2005. Т. 17. № 2. С. 119−125.
Remer R., Mahnke R. Application of Heston model and its solution to German DAX data // Physica A. 2004. V. 344. P. 236−239.
Ширяев А.Н. Вероятность. М.: Наука, 1980. 574 с.
Heston S.L. A closed-form solution for options with stochastic volatility with applications to bond and currency options // Rev. Financial Studies. 1993. V. 6. P. 327−343.
Бухбиндер Г.Л., Чистилин К.М. Описание российского фондового рынка в рамках модели Гестона // Математическое моделирование. 2005. Т. 17. № 10. С. 31−38.
Ivanova K.,Ausloos M., and Takayasu H. Deterministic and stochastic influences on Japan and US stock and foreign exchange markets. A Fokker-Planck approach //arXiv:condmat/ 0301268.
Stein E.M. and Stein J.C. Stock Price Distributions with Stochastic Volatility: An Analytic Approach // Rev. Financial Studies. 1991. V. 4. P. 727−752.
Cont R. Empirical properties of asset returns: stylized facts and statistical issues // Quant. Finance. 2001. V. 1. P.223−236.
Friedrich R., Peinke J.,Renner Ch. How to quantify deterministic and random influences on the statistics of the foreign exchange market // Phys. Rev. Lett. 2000. V. 84. P. 5224−5227.
Hull J., White A. The Pricing of Options on Assets with Stochastic Volatilities // J. Finance. 1987. V. XLII. P. 281−300.
Dragulescu A., Yakovenko V.M. Probability distribution of returns in the Heston model with stochastic volatility // Quant. Finance. 2002. V. 2. P. 443−453.
 Stochastic model of dynamic relative increments stock price | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2011. № 2(14).

Stochastic model of dynamic relative increments stock price | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2011. № 2(14).

Download file