Estimation of the parametric regression with a pulse noiseby discrete time observations
The paper considers the problem ofparametric estimation in a continuous time linear parametric regression model with a non-Gaussian Ornstein - Uhlenbeck process by discrete time observations. Improved estimates withsmaller mean square risk as compared with the ordinary least square estimates are proposed forthe unknown regression parameters. The asymptotic minimaxity of these estimates in the sense ofthe robust risk has been proved.
Keywords
негауссовская параметрическая регрессия,
улучшенное оценивание,
метод наименьших квадратов,
импульсный шум,
процесс Орнштейна - Уленбека,
квадратический риск,
минимаксность,
non-Gaussian parametric regression,
improved estimation,
least square estimates,
pulse noise,
Ornstein - Uhlenbeck process,
quadratic risk,
minimaxityAuthors
Konev Victor Vasilevich | National Research Tomsk State University | vvkonev@mail.tsu.ru |
Pchelintsev Evgeny Anatolevich | National Research Tomsk State University; Université de Rouen (France) | evgen-pch@yandex.ru |
Всего: 2
References
Barndorff-Nielsen O.E., Shephard N. Non-Gaussian Ornstein - Uhlenbeck - based models and some of their uses in financial mathematics // J. Royal Stat. Soc. 2001. No. 63. P. 167−241.
Ибрагимов И.А., Хасьминский Р.З. Асимптотическая теория оценивания. М.: Наука, 1979. 528 c.
Delong L., Klüppelberg C. Optimal investment and consumption in a Black - Scholes market with Lévy driven stochastic coefficients // Annals of Applied Probability. 2008. No. 18(3). P. 879−908.
James W., Stein Ch. Estimation with quadratic loss // Proc. of the Fourth Berkeley Symposium on Mathematics Statistics and Probability. V. 1. Berkeley: University of California Press, 1961. P. 361−380.
Baranchik A. A family of minimax estimators of the mean of a multivariate normal distribution // Ann. Math. Statist. 1970. No. 41. P. 642−645.
Efron B., Morris C. Families of minimax estimators of the mean of a multivariate normal distribution // Ann. Statist. 1976. No. 4. P. 11−21.
Lehmann E.L., Casella G. Theory of Point Estimation. 2nd edition. New York: Springer- Verlag Inc., 1998. 617 p.
Закс Ш. (Zacks S.) Теория статистических выводов. М.: Мир, 1975. 776 c.
Berger J.O., Bock M.E., Brown L.D., et al. Minimax estimation of a normal mean vector for arbitrary quadratic loss and unknown covariance matrix // Ann. Statist. 1977. No. 5. P. 763−771.
Berger J.O., Haff L.R. A class of minimax estimators of a normal mean vector for arbitrary quadratic loss and unknown covariance matrix // Statist. Decisions. 1983. № 1. P. 105−129.
Gleser L.J. Minimax estimators of a normal mean vector for arbitrary quadratic loss and unknown covariance matrix // Ann. Statist. 1986. No. 14. P. 1625−1633.
Fourdrinier D. Statistique Inférentielle. Dunod, 2002. 336 p.
Пчелинцев Е.А. Процедура Джеймса - Стейна для условно-гауссовской регрессии // Вестник Томского государственного университета. Математика и механика. 2011. № 4(16). С. 6−17.
Stein Ch. Estimation of the mean of a multivariate normal distribution // Ann. Statist. 1981. No. 9(6). P. 1135−1151.