Purely transcendental extensions of the field of rational numbers as base fields of csp-rings
We obtain conditions under which a purely transcendental extension of the field of rational numbers is a base field of some csp-ring. In the paper, we use properties of cardinal characteristics of the continuum.
Download file
Counter downloads: 368
Keywords
cardinal characteristics of the continuum, base field, csp-ring, кардинальные характеристики континуума, базовое поле, csр-кольцоAuthors
Name | Organization | |
Timoshenko Egor Aleksandrovwh | Tomsk State University | tea471@mail.tsu.ru |
References
Bartoszynski T., Judah H. Set Theory: on the Structure of the Real Line. Wellesley: A.K. Peters, 1995.
Van Douwen E.K. The integers and topology // Handbook of Set-Theoretic Topology. Amsterdam et al.: North-Holland, 1984. P. 111-167.
Blass A. Combinatorial cardinal characteristics of the continuum // Handbook of Set Theory. V. 1. Dordrecht et al.: Springer, 2010. P. 395-489.
Тимошенко Е.А. О базовых полях csp-колец // Алгебра и логика. 2010. Т. 49. С. 555-565.
Крылов П.А., Пахомова Е.Г., Подберезина Е.И. Об одном классе смешанных абелевых групп // Вестник ТГУ. 2000. № 269. С. 47-51.
Fomin A.A. Some mixed Abelian groups as modules over the ring of pseudo-rational numbers // Abelian Groups and Modules. Basel et al.: Birkhauser, 1999. P. 87-100.

Purely transcendental extensions of the field of rational numbers as base fields of csp-rings | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2013. № 5(25).
Download full-text version
Counter downloads: 1213