Conformal mapping onto a circular polygon with double simmetry
A conformal mapping of the unit disk E = {{ e C :| E, |< 1} onto a circular 2n-gon, n e N \ {1}, with n-fold symmetry of rotation relatively to the point w = 0 and with symmetry relatively to the straight l = {w e C :arg w = } hasbeenobtained in the integral form. Keywords: conformal mapping, symmetry of rotation, circular polygon, Schwarz derivative.
Download file
Counter downloads: 334
Keywords
конформное отображение, симметрия вращения, круговой многоугольник, производная ШварцаAuthors
Name | Organization | |
Kolesnikov Ivan Aleksandrovich | Tomsk State University | ia.kolesnikov@mail.ru |
References
Seth B.R. Torsion of beams whose cross-section is a regular polygon of n side // Mathematical Proceedings of the Cambridge Philosophical Society. 1934. V. 30. No. 2. P. 139-149.
Bassal W.A. The classical torsion problem for sections with curvilinear boundaries // Journal of the Mechanics and Physics of Solids. 1960. V. 8. P. 87-99.
Lee K. Torsion of fibers of an n-sided regular polygonal cross-section // Textile Research Journal. 2007. V. 77. No. 2. P. 111-115.
Hassenpflug W.C. Torsion of uniform bars with polygon cross-section // Computers and Mathematics with Applications. 2003. V. 46. P. 313-392.
Александров И.А., Соболев В.В. Математические задачи теории упругости, задача Сен-Венана. LAP Lambert Academic Publishing, 2011. 100 c.
Александров И.А., Садритдинова Г.Д. Отображение с симметрией вращения // Известия высших учебных заведений. 1998. № 10(437). С. 3-6.
Wang C.Y. Optimization of torsion bars with rounded polygonal cross section // Journal of Engineering Mechanics. 2013. No. 139. P. 629-634.
Бейтмен Г. Высшие трансцендентные функции. Гипергеометрическая функция. Функции Лежандра. Т. 1. М.: Наука. Физматлит, 1965. 296 c.
Poole E.G.C. Introduction to the theory of linear differential equations. London: Oxford University Press, 1936. 202 c.
Голузин Г.М. Геометрическая теория функции комплексного переменного. М.: Наука. Физматлит, 1966. 628 c.
