Gradient ceramic-metal materials formation with electron beam treatment at the forevacuum
The results of the use of an electron beam formed by a forevacuum plasma electron source for sintering powder metal-ceramic materials are presented. As sintered materials, mixtures of powders of titanium and ceramics based on aluminum oxide or zirconium oxide were used. Sintering was carried out using a focused beam directed to the surface of the metal-ceramic powder. It is shown that the use of a mixture of fine powder of zirconium dioxide or aluminum oxide with titanium allows to obtain a metal-ceramic sample with a concentration gradient of titanium in the sample volume.
Keywords
gradient ceramic materials,
cermets,
electron beam sintering,
градиентные керамические материалы,
металлокерамика,
электронно-лучевое спеканиеAuthors
Klimov A.S. | Tomsk State University of Control Systems and Radioelectronics | klimov@main.tusur.ru |
Zenin A.A. | Tomsk State University of Control Systems and Radioelectronics | zenin1988@gmail.com |
Bakeev I.Y.U. | Tomsk State University of Control Systems and Radioelectronics | bakeeviyu@mail.ru |
Oks E.M. | Tomsk State University of Control Systems and Radioelectronics; Institute of High Current Electronics SB RAS | oks@fet.tusur.ru |
Всего: 4
References
Burdovitsin V., Zenin A., Klimov A., et al. // Adv. Mater. Res. - 2014. - V. 872. - P. 150-156.
Казаков А.В., Климов А.С., Зенин А.А. // Доклады ТУСУРа. - 2012. - № 2-2 (26). - С. 186-189.
Двилис Э.С., Бурдовицин В.А., Хасанов А.О. и др. // Фундаментальные исследования. - 2016. - № 10-2. - С. 270-279.
Klimov A., Bakeev I., Oks E., and Zenin A. // Laser and Particle Beams. - 2019. - V. 37. - Iss. 2. - P. 203-208.
Burdovitsin V., Klimov A., Medovnik A., and Oks E. // Plasma Sources Sci. Technol. - 2010. - V. 19 (5). - P. 055003.
Burdovitsin V., Klimov A., and Oks E. // Tech. Phys. Lett. - 2009. - V. 35. - P. 511-513.
Yan W., Ge W., Smith J., et al. // Acta Mater. - 2016. - V. 115. - P. 403-412.
Wang J. // J. Am. Ceram. Soc. - 2006. - V. 89. - P. 1977-1984.
Qiao Z. et al. // Int. J. Refractory Metals and Hard Mater. - 2013. - V. 38. - P. 7-14.
Teber A. et al. // Int. J. Refractory Metals and Hard Mater. - 2012. - V. 30. - P. 64-70.
Yuan H. et al. // Int. J. Refractory Metals and Hard Mater. - 2012. - V. 34. - P. 13-417.
Marković S.J. // J. Eur. Ceram. Soc. - 2009. - V. 29. - P. 2309-2316.
Marin L. // Int. J. Solids Structures. - 2005. - V. 42 (15). - P. 4338-4351.
Liu T., Wang Q., Gao A., et al. // Scripta Mater. - 2007. - V. 57(11). - P. 992-995.
Kieback B., Neubrand A., and Riedel H. // Mater. Sci. Eng. A. - 2003. - V. 362. - P. 81-105.
Shanmugavel P., Bhaskar G.B., Chandrasekaran M., et al. // Eur. J. Sci. Res. - 2012. - V. 68. - No. 3. - P. 412-439.
Mortensen A. // Int. Mater. Rev. - 1995. - V. 6. - P. 239-265.
Naebe M. and Shirvanimoghaddam K. // Appl. Mater. Today. - 2016. - V. 5. - P. 223-245.
Boch P. and Nièpce J.C. // Ceramic Materials: Processes, Properties, and Applications. - John Wiley & Sons, 2010. - P. 573.
Каблов Е.Н. // Авиац. материалы и технологии. - 2015. - № 1 (34). - С. 3-33.
Чайникова А.С., Орлова Л.А., Попович Н.В. и др. // Авиационные материалы и технологии. - 2014. - № S6. - С. 52-58.
Cherradi N., Kawasaki A., and Gasik M. // Composites Eng. - 1994. - V. 4 (8). - P. 883-894.
Каблов Е.Н. // Металлы Евразии. - 2012. - № 3. - С. 10-15.