Physical principles of the method of low-frequency piezotromboelastography for the study of the rheological properties of whole blood | Izvestiya vuzov. Fizika. 2019. № 6. DOI: 10.17223/00213411/62/6/47

Physical principles of the method of low-frequency piezotromboelastography for the study of the rheological properties of whole blood

The paper describes the physics basis of the low-frequency piezothromboelastography method for studying viscous properties of whole blood and its application to diagnosis of haemostatic potential. A mathematical model of ultrasonic vibrations in a viscous liquid was developed. Piezothromboelastograph ARP-01M Mednord was used to do a numerical experiment on the modes of a piezoelectric sensor and its applicability in measuring dynamics of viscous properties of whole blood for. It is shown that the piezoelectric sensor reaches the optimal operation mode at the configuration of the needle-resonator in the form of a rectilinear rod with a loop. The maximum sensitivity in measuring amplitude-frequency characteristics of the signal on the recording piezoelement is observed at 2.95 kHz. A numerical experiment studying the influence of a viscous medium on changes in the amplitude-frequency characteristics of the oscillation of the needle-resonator of piezoelectric transducer with regard to the magnitude of viscous friction force was done. Viscous properties of water and glycerin were used as an example. The calculations were carried out for the two specified limiting cases of viscous force, which include the interval of change in the strength of the whole blood viscosity in the coagulation process. It is demonstrated that the method has sufficient sensitivity and, therefore, accuracy, to changes in viscous characteristics of blood and dynamics of their changes in coagulation.

Download file
Counter downloads: 126

Keywords

dynamics of blood viscosity, numerical modeling, coagulation of whole blood, non-Newtonian fluid, rheology, динамика вязкости крови, численное моделирование, коагуляция цельной крови, неньютоновская жидкость, реология

Authors

NameOrganizationE-mail
Demkin V.P.National Research Tomsk State Universitydemkin@ido.tsu.ru
Melnichuk S.V.National Research Tomsk State Universityosbereg@yandex.ru
Udut V.V.National Research Tomsk State University; Tomsk National Research Medical Center of the Russian Academy of Sciences Scientific Research Institute of Pharmacology and Regenerative Medicine named after E.D. Goldbergudutv@mail.ru
Tyutrin I.I.Siberian State Medical Universityityutrinst@yandex.ru
Demkin O.V.National Research Tomsk State Universitydemkin-oleg@ido.tsu.ru
Всего: 5

References

Ерофеев В.И., Кажаев В.В., Семерикова Н.П. Волны в стержнях. Дисперсия. Диссипация. Нелинейность. - М.: Физматлит, 2002. - 208 c.
Marcinkowska-Gapin´ska A., Gapinski J., Elikowski W., et al. // Med. Bio. Eng. Comput. - 2007. - V. 45. - No. 9. - P. 837-844.
Quemada D. // Biorheology. - 1981. - V. 18. - P. 501-516.
Mimouni Z. // Open J. Biophys. - 2016. - V. 6. - P. 29-33.
Bessonov N., Sequeira A., Simakov S., et al. // Math. Model. Nat. Phenom. - 2016. - V. 11. - No. 1. - P. 1-25.
Матвеенко В.Н., Кирсанов Е.А. // Вестник Московского университета. Сер. 2. Химия. - 2011. - Т. 52. - № 4. - С. 243-276.
Медведев А.Е. // Математическая биология и биоинформатика. - 2011. - Т. 6. - № 2. - С. 228-249.
Галочкина Т.В., Вольперт В.А. // Компьютерные исследования и моделирование. - 2017. - Т. 9. - № 3. - С. 469-486.
Sarvazyan A., Hall T.J., Urban M.W., et al. // I. Curr. Med. Imaging Rev. - 2011. - V. 7. - No. 4. - P. 255-282.
Bolliger D., Seeberger M.D., and Tanaka K.A. // Transfusion Medicine Rev. - 2012. - V. 26. - No. 1. - P. 1-13.
Пантелеев М.А., Атауллаханов Ф.И. // Клиническая онкогематология. - 2008. - Т. 1. - № 2. - С. 174-181.
Лебедева М.Н., Терещенкова Е.В., Агеенко А.М. и др. // Клиническая анестезиология и интенсивная терапия. - 2015. - № 1(5). - С. 37-43.
Клименкова В.Ф., Соловьев М.А., Иванова В.А. // Клиническая анестезиология и интенсивная терапия. - 2014. - № 2(4). - С. 53-59.
Лебедева М.Н., Терещенкова Е.В., Тютрин И.И. и др. // Бюллетень СО РАМН. - 2014. -Т. 34. - № 6. - С. 61-66.
Соловьев М.А., Удут В.В., Тютрин И.И. и др. // Медико-биологические и социально-психологические проблемы безопасности в чрезвычайных ситуациях. - 2015. - № 1. - С. 96-102.
Бутылин А.А., Пантелеев М.А., Атауллаханов Ф.И. // Российский химич. журн. - 2007. - Т. LI. - № 1. - С. 45-50.
Hund S.J., Kameneva M.V., and Antaki J.F. // Fluids. - 2017. - V. 2. - No. 10. - P. 2-17.
Тютрин И.И., Удут В.В. Низкочастотная пьезотромбоэластография цельной крови: алгоритмы диагностики и коррекции гемостазиологических расстройств. - Томск: Издат. Дом Томского государственного университета, 2016. - 170 с.
Thakur M. and Ahmed A.B. // Int. J. Perioperative Ultrasound and Appl. Technol. - 2012. - V. 1. - No. 1. - P. 25-29.
Huang C.-C., Lin Y.-H., Liu T.-Y., et al. // J. Med. Biol. Eng. - 2011. - V. 31. - P. 79-86.
Dias J.D., Haney E.I., Mathew B.A., et al. // Arch. Pathol. Lab. Med. - 2017. - V. 141. - P. 569-577.
Versteeg H.H., Heemskerk J.W.M., Levi M., et al. // Physiol. Rev. - 2013. - V. 93. - P. 327- 358.
Kevin J. Glaser and Richard L. Ehman. // Magnetic Resonance Elastography / eds. S.K. Venkatesh and R.L. Ehman. - N.Y., 2014. - V. XII. - P. 3-18.
Cardenas J.C., Rein-Smith C.M., and Church F.C. // Encyclopedia of Cell Biology. - 2016. - V. 1. - P. 714-722.
Palta S., Saroa R., and Palta A. // Ind. J. Anaesth. - 2014. - V. 58. - No. 5. - P. 515-523.
 Physical principles of the method of low-frequency piezotromboelastography for the study of the rheological properties of whole blood | Izvestiya vuzov. Fizika. 2019. № 6. DOI: 10.17223/00213411/62/6/47

Physical principles of the method of low-frequency piezotromboelastography for the study of the rheological properties of whole blood | Izvestiya vuzov. Fizika. 2019. № 6. DOI: 10.17223/00213411/62/6/47

Download full-text version
Counter downloads: 280