An influence of adhesion force and strain hardening coefficient on the rate of adhesive wear in a dry frictional contact | Izvestiya vuzov. Fizika. 2019. № 8. DOI: 10.17223/00213411/62/8/84

An influence of adhesion force and strain hardening coefficient on the rate of adhesive wear in a dry frictional contact

In the paper, we consider the tangential contact of the single microasperities of interacting surfaces, the mechanical characteristics of which are close to the characteristics of typical rail steels. Using computer simulation by the method of discrete elements, we studied the influence of the parameters of adhesive interaction of both external and internal surfaces on the regime of wear of asperities. It has been established that with an increase in the work of adhesion, the wear regime changes from slipping (low wear) to grinding or brittle fracture of asperities (high wear), and this change is of a threshold nature. We revealed an empirical sigmoidal dependence of the position of the border between two wear regimes (namely, the threshold value of adhesive stress) on the value of material’s strain hardening coefficient. It is shown that the logistic nature of this dependence is due to the competition of two mechanisms of elastic strain energy dissipation, which determine the mode of wear. These are plastic deformation and adhesion of the contacting surfaces. Special discussion is devoted to the question of the influence of the scale factor on the “threshold” values of the material’s mechanical characteristics, which provide the change of wear regime.

Download file
Counter downloads: 138

Keywords

адгезивный контакт, разрушение, режимы износа, моделирование, дискретные элементы, adhesive contact, fracture, wear regimes, computer modeling, discrete elements

Authors

NameOrganizationE-mail
Dimaki A.V.Institute of Strength Physics and Materials Science of SB RASdav@ispms.tsc.ru
Dudkin I.V.Institute of Strength Physics and Materials Science of SB RASpokrovitelchar@mail.ru
Popov V.L.Technische Universität Berlin, Berlin; National Research Tomsk State Universityv.popov@tu-berlin.de
Shilko E.V.Institute of Strength Physics and Materials Science of SB RAS; National Research Tomsk State Universityshilko@ispms.tsc.ru
Всего: 4

References

Vakis A.I., Yastrebov V.A., Scheibert J., et al. // Tribol. Int. - 2018. - V. 125. - P. 169-199.
Li Q. and Popov V.L. // Phys. Mesomech. - 2018. - V. 21. - P. 94-98.
Aghababaei R., Warner D.H., and Molinari J.-F. // Proc. Natl. Acad. Sci. U.S.A. - 2017. - V. 114. - P. 7935-7940.
Schirmeisen A. // Nat. Nanotechnol. - 2013. - V. 8. - P. 81-82.
Ciavarella M. and Papangelo A. // Phys. Mesomech. - 2018. - V. 21. - P. 59-66.
Maugis D. // J. Adhes. Sci. Technol. - 1996. - V. 10. - P. 161-175.
Rabinovich Y.I., Adler J.J., Ata A., et al. // J. Colloid Interface Sci. - 2000. - V. 232. - P. 10-16.
Burwell J.T. and Strand C.D. // J. Appl. Phys. - 1952. - V. 23. - P. 18-28.
Archard J.F. // J. Appl. Phys. - 1953. - V. 24. - P. 981-988.
Rabinowicz E. // Friction and Wear of Materialsю - 2nd edition. - N.Y.: Wiley, 2013. - P. 125-166.
Von Lautz J., Pastewka L., Gumbsch P., and Moseler M. // Tribol. Lett. - 2016. - V. 63. - Art. 26.
Brink T. and Molinari J.-F. // Phys. Rev. Mat. - 2019. - V. 3. - Art. 053064.
Rabinowicz E. // Wear. - 1958. - V. 2. - P. 4-8.
Aghababaei R., Warner D.H., and Molinari J.-F. // Nat. Commun. - 2016. - V. 7. - Art. 11816.
Zhong J., Shakiba R., and Adams J.B. // J. Phys. D: Appl. Phys. - 2013. - V. 46. - Art. 055307.
Zolnikov K.P., Kryzhevich D.S., Korchuganov A.V. // Lett. Mater. - 2019. - V. 9. - P. 197- 201.
Psakhie S.G., Zolnikov K.P., Kryzhevich D.S., and Korchuganov A.V. // Sci. Rep. - 2019. - V. 9. - Art. 3867.
Jing L. and Stephansson O. Fundamentals of Discrete Element Method for Rock Engineering: Theory and Applications. - Amsterdam: Elsevier, 2007. - 562 p.
Potyondy D.O. and Cundall P.A. // Int. J. Rock. Mech. Min. Sci. - 2004. - V. 41. - P. 1329-1364.
Savchenko N.L., Filippov A.V., Tarasov S.Yu., et al. // Friction. - 2018. - V. 6. - P. 323-340.
Psakhie S., Shilko E., Smolin A., et al. // Frattura Integr. Strutt. - 2013. - V. 24. - P. 59-91.
Shilko E.V., Psakhie S.G., Schmauder S., et al. // Comp. Mater. Sci. - 2015. - V. 102. - P. 267- 285.
Psakhie S.G., Dimaki A.V., Shilko E.V., and Astafurov S.V. // Int. J. Num. Meth. Eng. - 2016. - V. 106. - P. 623-643.
Wu S. and Xu X. // Rock. Mech. Rock Eng. - 2016. - V. 29. - P. 1813-1830.
Bicanic N. // Encyclopaedia of Computational Mechanics. - 2nd. edition / eds. by E. Stein, R. de Borst, and T.R.J. Hughes. - Glasgow: John Wiley & Sons, 2017. - P. 1-38.
Wilkins M.L. Computer Simulation of Dynamic Phenomena. - Berlin: Springer Verlag, 1999. - 246 p.
Borodich F.M. // Adv. Appl. Mech. - 2014. - V. 47. - P. 225-366.
Inoue M. // Advanced Adhesives in Electornics. Materials, Properties and Applications / eds. by M.O. Alam and C. Bailey. - Cambridge: Woodhead Publishing, 2011. - P. 157-198.
Dugdale D.S. // J. Mech. Phys. Solids. - 1960. - V. 8. - P. 100-104.
Maugis D.J. // J. Colloid Interface Sci. - 1992. - V. 150. - P. 243-269.
Dudkin I.V., Shilko E.V., and Dimaki A.V. // AIP Conf. Proc. - 2018. - V. 2051. - Art. 020069.
Глезер А.М. // Известия РАН. Сер. физич. - 2007. - Т. 71. - № 12. - С. 1764-1772.
Dimaki A., Shilko E., Psakhie S., and Popov V. // Facta Univ. Mech. Eng. - 2018. - V. 16. - P. 41-50.
 An influence of adhesion force and strain hardening coefficient on the rate of adhesive wear in a dry frictional contact | Izvestiya vuzov. Fizika. 2019. № 8. DOI: 10.17223/00213411/62/8/84

An influence of adhesion force and strain hardening coefficient on the rate of adhesive wear in a dry frictional contact | Izvestiya vuzov. Fizika. 2019. № 8. DOI: 10.17223/00213411/62/8/84