The surface region multilayer structure and the residual oxygen effect on its formation during the TiNi alloy processing with a low-energy high-current electron beam
The structure and phase composition of the surface TiNi layer modified by pulsed low-energy (up to ~ 40 keV) high-current (up to ~ 50 kA) microsecond electron beam were investigated. The effect of the number of electron beam pulses at a constant energy density on the structure characteristics, phase composition and phase distributions near the surface was considered. The influence of oxygen on the stabilization of the columnar structure in the rapidly solidified surface layer was discussed.
Keywords
никелид титана,
импульсные низкоэнергетические сильноточные электронные пучки,
атомно-кристаллическая структура,
нанофазы,
TiNi,
pulsed low-energy high-current electron beams,
atomic-crystalline structure,
nanophasesAuthors
Meisner L.L. | Institute of Strength Physics and Materials Science of SB RAS; National Research Tomsk State University | llm@ispms.ru |
Neiman A.A. | Institute of Strength Physics and Materials Science of SB RAS | nasa@ispms.ru |
Semin V.O. | Institute of Strength Physics and Materials Science of SB RAS | lpfreedom14@gmail.com |
Gudimova E.Yu. | Institute of Strength Physics and Materials Science of SB RAS; National Research Tomsk State University | egu@ispms.ru |
Ostapenko M.G. | Institute of Strength Physics and Materials Science of SB RAS | artifakt@ispms.ru |
Всего: 5
References
Yoneyama T. and Miyazaki S. Shape Memory Alloys for Biomedical Applications. - Cambridge: CRC Press, 2009. - 337 p.
Yamauchi K., Ohkata I., Tsuchiya K., et al. Shape Memory and Superelastic Alloys: Applications and Technologies. - Cambridge: Woodhead Publishing, 2011. - 232 p.
Frenzel J. et al. // J. Alloys Compounds. - 2004. - V. 385. - P. 214-223.
Otubo J. et al. // Mater. Sci. Eng. A. - 2006. - V. 438. - P. 679-682.
Neelakantan L., Monchev B., Frotscher M., et al. // Mater. Corros. - 2012. - V. 63. - P. 979- 984.
Rahim M., Frenzel J., Frotscher M., et al. // Acta Mater. - 2013. - V. 61.- P. 3667-3686.
Pauleau Y. Materials Surface Processing by Directed Energy Techniques. - Amsterdam: Elsevier, 2006. - 745 p.
Zhang K.M., Yang D.Z., Zou J.X., et al. // Surf. Coат. Technol. - 2006. - V. 201. - P. 3096-3102.
Maitz M.F. // Shape Memory Alloys for Biomedical Applications / eds. T. Yoneyama and S. Miyazaki. - Cambridge, 2009. - Chapter 8: Surface Modification of Ti-Ni Alloys for Biomedical Applications. - P. 173-193.
Rautray T.R., Narayanan R., and Kim K.-H. // Prog. Mater. Sci. - 2011. - V. 56. - P. 1137-1177.
Meisner L.L., Sivokha V.P., Lotkov A.I., et al. // Physica B. - 2001. - V. 307. - P. 251-257.
Tan L. and Crone W.C. // Acta Mater. - 2002. - V. 50. - P. 4449-4460.
Zou J.X., Grosdidier T., Zhang K.M., et al. // Eur. Phys. J. Appl. Phys. - 2008. - V. 43. - P. 327- 331.
Meisner L. et al. // J. Nanotech. - 2010. - V. 2010. - P. 1-8.
Meisner L.L. et al. // Surf. Coat Technol. - 2016. - V. 302. - P. 495-506.
Lipson G. and Stipple G. Interpretation of Powder X-ray Diffraction Patterns. - Moscow: Mir, 1972. - 384 p.
Neiman A.A., Meisner L.L., Lotkov A.I., et al. // Appl. Surf. Sci. - 2015. - V. 327. - P. 321-326.
Yurko G.A., Barton J.W., and Parr J.G. // Trans. Metallurg. Soc. AIME. - 1958. - V. 212. - P. 698- 700.
Артошина О.В., Милович Ф.О., Россоу А. и др. // Неорган. материалы. - 2016. - Т. 52. - № 9. - С. 1010-1020.
Otsuka K. and Ren X. // Prog. Mater. Sci. - 2005. - V. 50. - P. 511-678.
Chuprina V.G. and Shalya I.M. // Powder Metallurg. Metal Ceram. - 2002. - V. 41. - P. 85-89.
Молчанова Е.К. Атлас диаграмм состояния титановых сплавов. - М.: Машиностроение, 1964. - 392 с.
Otsuka K. and Wayman C.M. Shape Memory Materials. - Cambridge: Cambridge University Press, 1998. - 284 p.