Optical absorption spectrum of small fragments of a carbon plane with topological defects
Energy spectra of small fragments of a carbon plane both ideal and containing topological defects such as vacancies and the Stone-Wales deformation, are calculated in the frame of the Hubbard model in the approximation of static fluctuations. The optical absorption spectra of ideal and defective fragments are simulated; the change in the shape of the absorption curve with increasing vacancy concentration is analyzed. The dependences of the energy gap on the type of defect configuration and concentration are obtained.
Download file
Counter downloads: 115
Keywords
углеродная плоскость, топологические дефекты, спектр оптического поглощения, carbon plane, topological defects, optical absorption spectrumAuthors
Name | Organization | |
Bobenko N.G. | Institute of Strength Physics and Materials Science SВ RAS | nlitvin86@mail.ru |
Lobanov B.V. | Institute of Strength Physics and Materials Science SВ RAS; V.D. Kuznetsov Siberian Physical-Technical Institute | lbv_marsu@mail.ru |
Melnikova N.V. | V.D. Kuznetsov Siberian Physical-Technical Institute | phdmelnikova@gmail.com |
Ponomarev A.N. | Institute of Strength Physics and Materials Science SВ RAS | alex@ispms.tsc.ru |
References
Novoselov K.S. et al. // Science. - 2004. - V. 306. - P. 666.
Geim A.K. and Novoselov K.S. // Nature Mater. - 2007. - V. 6. - P. 183.
Abergel D.S. et al. // Adv. Phys. - 2010. - V. 59. - P. 261.
Zhu Y. et al. // Adv. Mater. - 2010. - V. 22. - P. 3906.
Cooper D.R. et al. // ISRN Condensed Matter. Phys. - 2012. - P. 501686.
Zaporotskova I.V. et al. // Mod. Electron. Mater. - 2016. - V. 2. - P. 95.
Vicarelli L. et al. // ACS Nano. - 2015. - V. 9. - P. 3428.
Son Y., Cohen M.L., and Louie S.G. // Phys. Rev. Lett. - 2006. - V. 97. - P. 216803.
Ahmadi E. and Asgari A. // Procedia Eng. - 2011. - V. 8. - P. 25.
Berahman M. et al. // Opt. Quantum Electron. - 2016. - V. 47. - P. 3289.
Tachikawa H., Iyama T., and Kawabata H. // Thin Solid Films. - 2014. - V. 554. - P. 199.
Kuc A., Heine T., and Seifert G. // Phys. Rev. B. - 2010. - V. 81. - P. 085430.
Silva A.M. et al. // J. Phys. Chem. C. - 2010. - V. 114. - P. 17472.
Левин А.А. // Введение в квантовую химию твердых тел. - М.: Химия, 1974. - 238 с.
Wehling T.O. et al. // Phys. Rev. Lett. - 2011. - V. 106. - P. 236805.
Palacios J.J. et al. // Semicond. Sci. Technol. - 2010. - V. 25. - P. 033003.
Yazyev O.V. // Phys. Rev. Lett. - 2008. - V. 101. - P. 037203.
Alfonsi J. and Meneghetti M. // New J. Phys. - 2012. - V. 14. - P. 053047.
Koshino M. et al. // Phys. Rev. X. - 2018. - V. 8. - P. 031087.
Guo C.X. et al. // Angewandte Chemie. Int. Ed. - 2010. - V. 49. - P. 3014.
Лоскутов В.В., Миронов Г.И., Нигматуллин Р.Р. // ФНТ. - 1996. - Т. 22. - C. 282.
Миронов Г.И., Мурзашев А.И. // ФТТ. - 2011. - Т. 53. - С. 2273.
Лобанов Б.В., Мурзашев А.И. // ФТТ. - 2013. - Т. 55. - С. 797.
Лобанов Б.В., Мурзашев А.И. // Изв. вузов. Физика. - 2016. - Т. 59. - № 6. - С. 88.
Лобанов Б.В., Мурзашев А.И. // ФТТ. - 2017. - Т. 59. - С. 409.
Мурзашев А.И., Шадрин Е.О. // ФТТ. - 2012. - Т. 54. - С. 2359.
Мурзашев А.И., Шадрин Е.О. // ЖЭТФ. - 2014. - Т. 145. - С. 1061.
Mueller S. and Muellen K. // Phil. Trans. Series A. - 2007. - V. 365. - P. 1453.
Hu W. et al. // J. Chem. Phys. - 2014. - V. 141. - P. 214704.
Wu Z. et al. // Nanoscale. - 2014. - V. 6. - P. 3868.
Zhang J. et al. // J. Nanomaterials. - 2016. - P. 9245865.
Chhabra V.A. et al. // R. Soc. Chem. Adv. - 2018. - V. 8. - P. 11446.
Yan R. et al. // R. Soc. Chem. Adv. - 2014. - V. 4. - P. 23097.