Investigation of the ferromagnetic resonance of the structure of FeNi/Cu/FeNi in the composition of a coplanary line in the frequency range from 1 to 20 GHz
The results of the calculation of the geometric parameters of the coplanar line are presented using the methods of conformal mapping of computer simulation in the COMSOL Multiphysics program. In one technological cycle both coplanar excitation signal transmission line and lithographic microdimensionalFeNi/Cu/FeNi flat elements were obtained. An experimental study of the magnetodynamics of the fabricated elements in the frequency range 1-20 GHz is presented. The possibility of determining the basic parameters of ferromagnetic resonance of film ferromagnetic microstructures is shown.
Keywords
микроволновое поглощение,
магнитные пленки,
копланарная линия,
ферромагнитный резонанс,
литографические микроразмерные элементы,
microwave absorption,
magnetic films,
coplanar line,
ferromagnetic resonance,
lithographic microsize elementsAuthors
Scherbinin S.V. | Ural Federal University; Institute of Electrophysics Urals Divisions Russian Academy of Science | scher30@yandex.ru |
Volchkov S.O. | Ural Federal University; University of Durham | Stanislav.volchkov@urfu.ru |
Swindells C. | University of Durham | physics.office@durham.ac.uk |
Nicholson B. | University of Durham | physics.office@durham.ac.uk |
Atkinson D. | University of Durham | physics.office@durham.ac.uk |
Kurlyandskaya G.V. | Ural Federal University; University of the Basque Country UPV-EHU | galinakurlyandskaya@urfu.ru |
Всего: 6
References
Chen L. F., Ong C.K., Neo C.P., et al. Microwave Electronics: Measurement and Materials Characterization. - John Wiley & Sons, Ltd., 2004. - 552 p.
Волчков С.O., Свалов А.В., Курляндская Г.В. // Изв. вузов. Физика. - 2009. - Т. 52. - № 8. - С. 3-9.
Antonov A., Gadetsky S., Granovsky A., et al. // Physica A. - 1997. - V. 241. - P. 414-419.
Gardner D.S., Schrom G., Paillet F., et al. // IEEE Trans. Magn. - 2009. - V. 45. - Nо. 10. - P. 4760-4766.
Chen Y.F., Wu K.T., Yao Y.D., et al. // Microelectron. Eng. - 2005. - V. 81. - P. 329-335.
Rinkevich A.B., Pakhomov Ya. A., Kuznetsov E.A., et al. // Tech. Phys. Lett. - 2019. - V. 45. - Nо. 3. - P. 225-227.
Corrêa M.A., Bohn F., Viegas A.D.C., et al. // JMMM. - 2008. - V. 320. - Nо. 14. - P. e25-e28.
García-Arribas A., Fernandez E., Svalov A., et al. // JMMM. - 2016. - V. 400. - P. 321-326.
Buettel G., Joppich J., and Hartmann U. // Appl. Phys. Lett. - 2017. - V. 111. - P. 232401.
Nguyen C. Analysis Methods for RF, Microwave, and Millimeter-wave Planar Transmission Line Structures. - John Wiley & Sons, Inc., 2003. - 256 p.
Kittel C. Introduction to Solid State Physics. - N.Y., NY, USA: Wiley, 1996. - 704 p.
Bhagat S.M. Metals Handbook. V. 10. - American Society of Metals. - Metals Park, OH, 1986. - 267 p.
Gonzalez J.M., Garcia-Arribas A., Shcherbinin S.V., et al. // Measurement: J. Int. Measurement Confederat. - 2018. - V. 126. - P. 215-222.
Buznikov N.A., Safronov A.P., Orue I., et al. // Biosensors and Bioelectronics. - 2018. - V. 117. - P. 366.
Ding J., Kostylev M., and Adeyeye A.O. // Phys. Rev. B. - 2011. - V. 84. - P. 054425.
Мительман Ю.Е. Автоматизированное проектирование микроволновых устройств в AWRDE. - УрФУ, 2012. - 27 c.
Банков С.Е., Курушин А.А., Разевиг В.Д. Анализ и оптимизация СВЧ-структур с помощью HFSS. - М.: Солон-Пресс, 2004. - 283 с.
Yao X. and Jaeger N.A.F. // Proc. Photonics North. - 2011. - V. 8007. - P. 80070G.
Щербинин С.В., Волчков С.О., Лепаловский В.Н. и др. // Дефектоскопия. - 2017. - № 3. - С. 41-49.
Simons R.N. Coplanar Waveguide Circuits, Components, and Systems. - John Wiley & Sons, Inc., 2001. - 464 p.