Structure and properties of zrc/c high temperature heteromodulus composites
It has been studied carbon addition on densification and mechanical properties of ZrC/C heteromodulus composites. I was shown that for small amount of carbon to ZrC the residual porosity are decrease, for higher carbon content, more 3vol.% the residual porosity increase. Beside this, increasing of carbon content in ZrC/C composites increase the toughness of sintered material. For example, КIC = 4.3 MPa*m1/2 for ZrC and for 3 vol.% C КIC = 7 MPa*m1/2. For 15 vol.% of carbon toughness was smallest and equals 5.3 MPa*m1/2.
Download file
Counter downloads: 92
Keywords
керамический композит, карбиды, трещиностойкость, твердость, упругость, гетероструктуры, ceramic composites, carbides, toughness, hardness, elasticity, heterostructuresAuthors
Name | Organization | |
Mirovoy Yu.A. | Institute of Strength Physics and Materials Science of SB RAS | y.a.mirovoy@gmail.com |
Burlachenko A.G. | Institute of Strength Physics and Materials Science of SB RAS | aleksburlachenko@rambler.ru |
Buyakova S.P. | Institute of Strength Physics and Materials Science of SB RAS | sbuyakova@ispms.tsc.ru |
References
Simonenko E.P. et al. // Russ. J. Inorgan. Chem. - 2013. - V. 58. - No. 14. - P. 1669-1693.
Sciti D., Guicciardi S., and Nygren M. // Scripta Mater. - 2008. - V. 59. - No. 6. - P. 638-641.
Min-Haga E. and Scott W. D. // J. Mater. Sci. - 1988. - V. 23. - No. 8. - P. 2865-2870.
Schönfeld K., Martin H.P., and Michaelis A. // J. Adv. Ceram. - 2017. - V. 6. - No. 2. - P. 165- 175.
Li J. et al. // Mater. Design. - 2016. - V. 104. - P. 43-50.
Launey M.E. and Ritchie R.O. // Adv. Mater. - 2009. - V. 21. - No. 20. - P. 2103-2110.
Wei T. et al. // Mater. Lett. - 2008. - V. 62. - No. 4-5. - P. 641-644.
Cook J. et al. // Soc. Lond. A. Math. Phys. Sci. - 1964. - V. 282. - No. 1390. - P. 508.
Rebillat F., Lamon J., and Guette A. // Acta Mater. - 2000. - V. 48. - No. 18-19. - P. 4609-4618.
Carrère N., Martin E., and Lamon J. // Composites. A. Appl. Sci. Manufactur. - 2000. - V. 31. - No. 11. - P. 1179-1190.
Kovziridze Z. et al. // J. Eur. Ceram. Soc. - 2011. - V. 31. - No. 10. - P. 1921-1926.
Pompidou S. and Lamon J. // Composit. Sci. Technol. - 2007. - V. 67. - No. 10. - P. 2052-2060.
Shabalin I.L. et al. // Adv. Appl. Ceram. - 2010. - V. 109. - No. 7. - P. 405-415.
Gömze L.A. and Gömze L.N. // Epa.-J. Silic. Based Compos. Mater. - 2010. - V. 62. - P. 98-101.
Landwehr S.E. et al. // Mater. Sci. Eng. A. - 2008. - V. 497. - No. 1-2. - P. 79-86.
Sagdic S. et al. // TMS Annu. Meet. - 2012. - V. 1. - P. 569-575.
Cost J.R., Janowski K.R., and Rossi R.C. // Philos. Mag. A. J. Theor. Exp. and Appl. Phys. - 1968. - V. 17. - No. 148. - P. 851-854.
Zhao L. et al. // Int. J. Refractory Metals and Hard Mater. - 2011. - V. 29. - No. 4. - P. 516-521.
Wang X.G. et al. // J. Eur. Ceram. Soc. - 2011. - V. 31. - No. 6. - P. 1103-1111.
Niihara K., Morena R., and Hasselman D.P.H. // J. Mater. Sci. Lett. - 1982. - V. 1. - No. 1. - P. 13-16.
Kim J.H., Seo M., and Kang S. // Int. J. Refractory Metals and Hard Mater. - 2012. - V. 35. - P. 49-54.
Guo S. // J. Eur. Ceram. Soc. - 2014. - V. 34. - No. 3. - P. 621-632.
Emami S.M. et al. // Ceram. Int. - 2017. - V. 43. - No. 1. - P. 111-115.
Cai X. et al. // J. Alloys Compounds. - 2017. - V. 728. - P. 788-796.
Maj J. et al. // Mater. Sci. Eng. A. - 2018. - V. 715. - P. 154-162.
Ferraro C. et al. // Acta Mater. - 2018. - V. 144. - P. 202-215.
Han C. et al. // Mater. Design. - 2018. - V. 141. - P. 256-266.
Shaw L.L., Luo H., and Zhong Y. // Mater. Sci. Eng. A. - 2012. - V. 537. - P. 39-48.
Asl M.S. et al. // Mater. Sci. Eng. A. - 2018. - V. 716. - P. 99-106.
Wen Q. et al. // Mater. Sci. Eng. A. - 2017. - V. 701. - P. 338-343.
Hall E.O. // Nature. - 1954. - V. 173. - No. 4411. - P. 948-949.
Бурлаченко А.В., Мировой Ю.А., Дедова Е.С. // Изв. вузов. Физика. - 2019. - Т. 62. - № 8. - С. 121-127.