Studying strain localization in brittle materials in Brazilian test conditions | Izvestiya vuzov. Fizika. 2020. № 6. DOI: 10.17223/00213411/63/6/70

Studying strain localization in brittle materials in Brazilian test conditions

The formation of strain inhomogeneity of zirconia ceramics have been studied during Brazilian test using a digital image correlation method. Spatiotemporal patterns of strain localization along the axis of a deformed sample (e хх ( x )) and across this axis (e yy ( y )) were obtained. It was shown that with increasing load the deformation along the longitudinal axis was about 0.3%, and along the transverse axis less or equal to 0.12%. It is established that the e хх and e yy deformations accumulated during the diametral compression test are inhomogeneously distributed over the sample. The component of strain e хх and e yy has a non-uniform distributions on the sample surface and deformation of zirconia proceeds macroscopically localized. The size of the coherently diffracting domains of the tetragonal phase and lattice microdistortion changes compared with the initial state after sintering and differ on different fracture fragments of the sample after its fracture. This is manifested by variation of the microstructure characteristics such as the size of the coherently diffracting domains of a tetragonal phase and microstresses and leads to the tetragonal-monoclinic phase transformation. It was found that microstresses measured on different surfaces of fracture fragments of sample change in the range of 245-320 MPa, in accordance with the arising inhomogeneity of deformation. Strain localization correlates with inhomogeneity of the microstresses arising in the material volume in during deformation.

Download file
Counter downloads: 123

Keywords

корреляция цифровых изображений, диаметральное сжатие, диоксид циркония, макроскопическая локализация деформации, рентгенофазовый анализ, численное моделирование, digital image correlation, diametral compression, zirconia, macroscopic strain localization, x-ray phase analysis, numerical simulation

Authors

NameOrganizationE-mail
Kulkov S.N.Institute of Strength Physics and Materials Science of SB RASkulkov@ms.tsc.ru
Smolin I.Yu.Institute of Strength Physics and Materials Science of SB RASsmolin@ispms.tsc.ru
Mikushina V.A.Institute of Strength Physics and Materials Science of SB RASmiva@ispms.ru
Sablina T.Yu.Institute of Strength Physics and Materials Science of SB RASsabtat@ispms.tsc.ru
Sevostyanova I.N.Institute of Strength Physics and Materials Science of SB RASsevir@is[ms.tsc.ru
Gorbatenko V.V.Institute of Strength Physics and Materials Science of SB RASgvv@ispms.tsc.ru
Всего: 6

References

Зуев Л.Б., Данилов В.И., Баранникова С.А. Физика макролокализации пластического течения. - Новосибирск: Наука, 2008. - 328 с.
Разумовский И.А. Интерференционно-оптические методы механики деформируемого твердого тела. - М.: Изд-во МГТУ, 2007. - 240 с.
Смолин А.Ю., Еремина Г.М., Коростелев С.Ю. // Изв. вузов. Физика. - 2019. - Т. 62. - № 8. - С. 128-136.
Зуев Л.Б. Автоволновая пластичность. Локализация и коллективные моды. - М.: Физматлит, 2018. - 208 с.
Makarov P.V., Smolin I.Yu., Prokopinsky I.P., et al. // Int. J. Frac. - 1999. - V. 100. - Iss. 2. - P. 121-131. https://doi.org/10.1023/A:1018765801332.
Баранникова С.А., Буякова С.П., Зуев Л.Б. и др. // Письма в ЖТФ. - 2007. - Т. 33. - Вып. 11. - С. 57-64.
Sevostyanova I.N., Sablina T.Yu., Savchenko N.L., et al. // IOP Conf. Ser.: Mater. Sci. Eng. - 2018. - V. 447. - P. 012022-1-012022-4. https://doi.org/10.1088/1757-899X/447/1/012022.
Sheikh M.Z., Wang Z., Du B., et al. // Ceram. Int. - 2019. - V. 45. - P. 7931-7944. https://doi.org/10.1016/j.ceramint.2019.01.106.
Li D. and Wong L.N.Y. // Rock Mech. Rock Eng. - 2003. - V. 46. - P. 269-287. https://doi.org/10.1007/ s00603-012-0257-7.
Mousavi Nezhad M., Fisher Q.J., Gironacci E., et al. // Rock Mech. Rock Eng. - 2018. - V. 51. - P. 1755-1775. https://doi.org/10.1007/s00603-018-1429-x.
Гольцев В.Ю., Осинцев А.В., Плотников А.С. // Письма о материалах. - 2017. - Т. 7. - № 1. - С. 21-25. https://doi.org/10.22226/2410-3535-2017-1-21-25.
Matsui K., Horikoshi H., Ohmichi N., et al. // J. Am. Ceram. Soc. - 2003. - V. 86. - P. 1401-1408. https://doi.org/10.1111/j.1151-2916.2003.tb03483.x.
Уманский Я.С., Скаков Ю.А., Иванов А.Н. и др. Кристаллография, рентгенография и электронная микроскопия. - М.: Металлургия, 1982. - 632 с.
Grant K.L., Rawlings R.D., Sweeney R.J. // Mater. Sci. Mater. Med. - 2001. - V.12. - No. 6. - P. 557-564.
Тимошенко С.П., Гудьер Дж. Теория упругости. - М.: Наука, 1975. - 757 с.
Garcia-Fernandez C.C., Gonzalez-Nicieza C., Alvarez-Fernandez M.I., et al. // Int. J. Rock Mech. Min. Sci. - 2018. - V. 103. - No. 3. - P. 254-265. https://doi.org/10.1016/j.ijrmms.2018.01.045.
Sutton M.A., Orteu J.J., and Schreier H. Image Correlation for Shape, Motion and Deformation Measurements. Theory and Applications. - Berlin; Heidelberg: Springer, 2009.
Sevostyanova I.N., Sablina T.Yu., Gorbatenko V.V., et al. // Tech. Phys. Lett. - 2019. - V. 45. - No. 9. - P. 943-946. https://doi.org/10.1134/S1063785019090281.
Le Corre V., Brusselle-Dupend N., and Moreaud M. // Mech. Mat. - 2017. - V. 114. - P. 161- 171. https://doi.org/10.1016/j.mechmat.2017.08.002.
Микушина В.А., Смолин И.Ю. // Вестник Томского государственного университетата. Математика и механика. - 2019. - № 58. - С. 99-108. https://doi.org/10.17223/19988621/58/8.
Wilkins M.L. Computer Simulation of Dynamic Phenomena. - Berlin; Heidelberg: Springer Verlag, 1999. - 246 p.
 Studying strain localization in brittle materials in Brazilian test conditions | Izvestiya vuzov. Fizika. 2020. № 6. DOI: 10.17223/00213411/63/6/70

Studying strain localization in brittle materials in Brazilian test conditions | Izvestiya vuzov. Fizika. 2020. № 6. DOI: 10.17223/00213411/63/6/70