The effect of inert particles on the physical laws of bulk synthesis of a composite
Physical phenomena accompanying the bulk synthesis of a composite from pure elements with the addition of inert particles are analyzed in the article. Among the main reasons, a change in the thermophysical properties (heat capacity and thermal conductivity coefficient) and a decrease in the total heat release in a chemical reaction are highlighted. The complex of chemical reactions in this case is described by the total reaction with effective formal kinetic parameters. The kinetic law accounts for the reaction retardation by the layer of the synthesized product, which prevents the interaction of reagents. The effective thermophysical properties of the mixture in the reactor depend on the properties of the components and the volume fraction of inert particles. It is shown that the addition of refractory particles to the mixture slows down the stage of the ignition process and leads to a more complete conversion due to the heat stored in inert particles.
Keywords
высокотемпературный синтез,
инертные частицы,
интерметаллид,
математическое моделирование,
high-temperature synthesis,
inert particles,
intermetallic compound,
mathematical modelingAuthors
Bukrina N.V. | Institute of Strength Physics and Materials Science of SB RAS | bnv@ispms.tsc.ru |
Knyazeva A.G. | Institute of Strength Physics and Materials Science of SB RAS | anna-knyazeva@mail.ru |
Всего: 2
References
Levashov E.A., Mukasyan A.S., Rogachev A.S., et al. // Int. Mater. Rev. - 2016. - V. 62. - No. 4. - P. 203-239.
Князева А.Г., Травицкий Н. // Изв. вузов. Физика. - 2019. - Т. 62. - № 8. - С. 175-182.
Lapshin O.V., Boyangin E.N., and Ovcharenko V.E. // Combust. Explos. Shock Waves. - 2005. - V. 41. -No. 1. - P. 64-70.
Mohammad Bagher Rahaei // Adv. Powder Technol. - 2019. - V. 30. - P. 1025-1033.
Zhu X., Zhang T., Marchant D., et al. // J. Eur. Ceram. Soc. - 2010. - V. 30. - No. 13. - P. 2781- 2790.
Shokati A.A., Parvin N., Sabzianpour N., et al. // J. Alloys Compd. - 2013. - V. 549. - P. 141- 146.
Lapshin O.V. and Ovcharenko V.E. // Combust Explos. Shock Waves. - 1998. - V. 34. - P. 26-28.
Прокофьев В.Г., Смоляков В.К. // ФГВ. - 2018. - Т. 54. - № 1. - С. 27-32.
Rajendra K.Bordia, Suk-Joong L. Kang, and Eugene A. Olevsky // J. Am. Ceram. Soc. - 2017. - V. 100. - Iss. 6. - P. 2314-2352.
Johannes Hotzer, Marco Seiz, Michael Kellner, et al. // Acta Mater. - 2019. - V. 164. - P. 184-195.
Sudipta Biswas, Daniel Schwen, Hao Wang, et al. // Computation. Mater. Sci. - 2018. - V. 148. - P. 307-319.
Rui-jie Zhang, Zhong-wei Chen, Wei Fang, et al. // Trans. Nonferrous Metals Soc. China. - 2014. - V. 24. - Iss. 3. - P. 783-789.
Чащина А.А., Князева А.Г. // ФГВ. - 2004. - Т. 40. - № 4. - С. 67-73.
Bukrina N. and Knyazeva A. // Int. J. Heat and Mass Transfer. - 2020. - V. 152. - P. 119553; https://doi.org/10.1016/j.ijheatmasstransfer.2020.119553.
Bukrina N.V. and Knyazeva A.G. // High Temp. Mater. Proc. - 2020. - V. 23. 10.1615 / HighTempMatProc.2020033859.
Ovcharenko V.E. et al. // Mater. Sci. Forum. Mater. and Proc. Technol. - 2017. - V. 906. - P. 95-100.
Букрина Н.В., Князева А.Г., Овчаренко В.Е. // Междисциплинарные проблемы аддитивных технологий: материалы III Всерос. науч. семинара с международным участием [Электрон. текстовые дан.]; Томский политехнический университет. - Томск: Изд-во Томского политехнического университета, 2018. - С. 3-9.
Bakinovskii A., Knyazeva A.G., Krinitcyn M.G., et al. // Int. J. Self-Propag. High-Temp. Synth. - 2019. - V. 28. - No. 4. - P. 245-255.