Methods of preparation and temporal stability of GaSe and InSe nanolayers
GaSe and InSe nanolayers were obtained by mechanical exfoliation and physical vapor deposition methods on silicon substrates. Employing atomic force microscopy the surface morphology and thickness of obtained InSe and GaSe nanolayers were studied, as well as their temporal stability. The observed spectral positions of the Raman peaks were in agreement with the position of the peaks known for bulk and nanolayered InSe and GaSe samples.
Download file
Counter downloads: 83
Keywords
селенид индия, селенид галлия, нанослои, квазидвумерный полупроводник, осаждение из паровой фазы, морфология поверхности, спектр комбинационного рассеяния, gallium selenide, indium selenide, nanolayers, quasi-two-dimensional semiconductor, physical vapor deposition, surface morphology, Raman spectrumAuthors
Name | Organization | |
Redkin R.A. | National Research Tomsk State University | ruseg89@mail.ru |
Kobtsev D.A. | National Research Tomsk State University | Danbers27@gmail.com |
Bereznaya S.A. | National Research Tomsk State University | nlo.atom@mail.ru |
Korotchenko Z.V. | National Research Tomsk State University | zvk.07@mail.ru |
Novikov V.A. | National Research Tomsk State University | novikovvadim@mail.ru |
Sarkisov S.Y.U. | National Research Tomsk State University | sarkisov@mail.tsu.ru |
References
Hu P., Wen Z., Wang L., et al. // ACS Nano. - 2012. - V. 6. - P. 5988-5994.
Lei S., Ge L., Liu Z., et al. // Nano Lett. - 2013. - V. 13. - P. 2777-2781.
Jie W., Chen X., Li D.б et al. // Angew. Chem. Int. Edit. - 2015. - V. 54. - P. 1185-1189.
Zhou X., Cheng J., Zhou Y.б et al. // J. Am. Chem. Soc. - 2015. - V. 137. - P. 7994-7997.
Karvonen L., Säynätjoki A., Mehravar S.б et al. // Sci. Rep. - 2015. - V. 5. - P. 10334 (8 p).
Zhou Y., Nie Y., Liu Y.б et al. // ACS Nano. - 2014. - V. 8. - P. 1485-1490.
Del Pozo-Zamudio O., Schwarz S., Klein J., et al. // 2D Materials. - 2015. - V. 2. - P. 1-6.
Mahjouri-Samani M., Gresback R., Tian M., et al. // Adv. Functional Mater. - 2014. - V. 24. - P. 6365-6371.
Kosobutsky A.V. and Sarkisov. S.Y. // Phys. Solid State. - 2018. - V. 60. - P. 1686-1690.
Bandurin D.A., Tyurnina A.V., Yu G.L., et al. // Nature Nanotechnol. - 2017. - V. 12. - P. 223-227.
Sarkisov S.Yu., Kosobutsky A.V., and Shandakov S.D. // J. Solid State Chem. - 2015. - V. 232. - P. 67-72.
Sarkisov. S.Y., Kosobutsky A.V., Brudnyi V.N., et al. // Phys. Solid State. - 2015. - V. 57. - P. 1735-1740.
Brudnyi V.N., Sarkisov S.Yu., and Kosobutsky A.V. // Semicond. Sci. Technol. - 2015. - V. 30. - P. 115019 (9 p).
Bereznaya S.A., Korotchenko Z.V., Redkin R.A., et al. // J. Opt. - 2017. - V. 19. - P. 115503 (7 p).
Redkin R.A., Kobtsev D.A., Bereznaya S.A., et al. // Mater. Res. Express. - 2019. - V. 6. - P. 26201 (7 p).
Bereznaya S.A., Korotchenko Z.V., Novikov V.A., et al. // Infrared Phys. Techn. - 2016. - V. 76. - P. 126-130.