Nucleation and development of plasticity in nanocrystalline BCC iron under shear loading | Izvestiya vuzov. Fizika. 2020. № 11. DOI: 10.17223/00213411/63/11/17

Nucleation and development of plasticity in nanocrystalline BCC iron under shear loading

The features of the nucleation and development of plasticity in nanocrystalline iron with BCC lattice under shear were studied. The mechanisms of plastic deformation playing the main role in the development of structural rearrangements during loading were revealed. It was shown that the development of plasticity can be conditionally divided into several stages. The first stage of plasticity development is associated with the formation and propagation of dislocations and twins. At the second stage, intraganular slip and intergranular sliding begin to make the main contribution to plastic deformation. These processes initiate a change in the shape of the grains. At large shear, the deformation behavior of the sample is governed by the migration of the interfaces. Not only grain boundaries migrate but also twin ones do. As a result of migration processes, the grain sizes of the nanocrystalline sample are enlarged.

Download file
Counter downloads: 19

Keywords

molecular dynamics, grain boundary migration, atomic plasticity mechanisms, plastic deformation, twinning, dislocation, structural defects

Authors

NameOrganizationE-mail
Zolnikov K.P.Institute of Strength Physics and Materials Science of SB RASkost@ispms.ru
Kryzhevich D.S.Institute of Strength Physics and Materials Science of SB RASkryzhev@ispms.ru
Korchuganov A.V.Institute of Strength Physics and Materials Science of SB RASavkor@ispms.ru
Всего: 3

References

Kou Z., Yang Y., Yang L., et al. // Mater. Sci. Eng. A. - 2018. - V. 737. - P. 336-340.
Plimpton S. // J. Comput. Phys. - 1995. - V. 117(1). - P. 1-19.
Honeycutt J.D. and Andersen H.C. // J. Phys. Chem. - 1987. - V. 91(19). - P. 4950-4963.
Stukowski A. and Albe K. // Model. Simul. Mater. Sci. Eng. - 2010. - V. 18(8). - P. 085001.
Stukowski A. // Model. Simul. Mater. Sci. Eng. - 2010. - V. 18(1). - P. 015012.
Malerba L., Marinica M.C., Anento N., et al. // J. Nucl. Mater. - 2010. - V. 406(1). - P. 19-38.
Zolnikov K.P., Korchuganov A.V., Kryzhevich D.S., et al. // Phys. Mesomech. - 2018. - V. 21(6). - P. 492-497.
Korchuganov A.V., Zolnikov K.P., and Kryzhevich D.S. // Mater. Lett. - 2019. - V. 252. - P. 194-197.
Zolnikov K.P., Korchuganov A.V., Kryzhevich D.S., et al. // Phys. Mesomech. - 2019. - V. 22(5). - P. 355-364.
Tarasov S.Y., Chumaevskii A.V., Lychagin D.V., et al. // Wear. - 2018. - V. 410-411. - P. 210-221.
Eremina G.M. and Smolin A.Y. // Facta Univ. Ser. Mech. Eng. - 2019. - V. 17(1). - P. 29-38.
Shugurov A., Panin A., Dmitriev A., et al. // Wear. - 2018. - V. 408-409. - P. 214-221.
Smolin A.Y., Eremina G.M., Sergeev V.V., et al. // Phys. Mesomech. - 2014. - V. 17(4). - P. 292-303.
Dmitriev A.I., Smolin A.Y., Psakhie S.G., et al. // Phys. Mesomech. - 2008. - V. 11(1-2). - P. 73-84.
Zhang L., Shibuta Y., Huang X., et al. // Comput. Mater. Sci. - 2019. - V. 156. - P. 421-433.
Velasco M., Van Swygenhoven H., and Brandl C. // Scr. Mater. - 2011. - V. 65(2). - P. 151-154.
Wang P., Yang X., and Peng D. // Comput. Mater. Sci. - 2016. - V. 112. - P. 289-296.
Zhang L., Lu C., and Shibuta Y. // Model. Simul. Mater. Sci. Eng. - 2018. - V. 26(3). - P. 035008.
Литовченко И.Ю., Тюменцев А.Н. // Изв. вузов. Физика. - 2019. - Т. 62. - № 5. - С. 142-148.
Wang Y.M., Hodge A.M., Biener J., et al. // Appl. Phys. Lett. - 2005. - V. 86 (10). - P. 1-3.
Rupert T.J., Gianola D.S., Gan Y., et al. // Science. - 2009. - V. 326(5960). - P. 1686-1690.
Hahn E.N. and Meyers M.A. // Mater. Sci. Eng. A. - 2015. - V. 646. - P. 101-134.
Dmitriev A.I., Nikonov A.Y., Shugurov A.R., et al. // Appl. Surf. Sci. - 2019. - V. 471. - P. 318-327.
Zhang Y., Tucker G.J., and Trelewicz J.R. // Acta Mater. - 2017. - V. 131. - P. 39-47.
Bobylev S.V., Morozov N.F., and Ovid’ko I.A. // Phys. Rev. Lett. - 2010. - V. 105(5). - P. 055504.
Ovid’ko I.A., Sheinerman A.G., and Aifantis E.C. // Acta Mater. - 2011. - V. 59(12). - P. 5023-5031.
Molodov D.A., Ivanov V.A., and Gottstein G. // Acta Mater. - 2007. - V. 55(5). - P. 1843-1848.
Bobylev S.V. and Ovid’ko I.A. // Acta Mater. - 2015. - V. 88. - P. 260-270.
Cahn J.W., Mishin Y., and Suzuki A. // Acta Mater. - 2006. - V. 54(19). - P. 4953-4975.
Zolnikov K.P., Kryzhevich D.S., and Korchuganov A.V. // Lett. Mater. - 2019. - V. 9(2). - P. 197-201.
Kryzhevich D.S., Zolnikov K.P., and Korchuganov A.V. // Comput. Mater. Sci. - 2018. - V. 153. - P. 445-448.
Zhou X., Li X., and Lu K. // Phys. Rev. Lett. - 2019. - V. 122(12). - P. 126101.
Bondar M.P., Psakhie S.G., Dmitriev A.I., et al. // Phys. Mesomech. - 2013. - V. 16(3). - P. 191-199.
Ovid’ko I.A. // J. Mater. Sci. - 2007. - V. 42(5). - P. 1694-1708.
Conrad H. // Metall. Mater. Trans. A. Phys. Metall. Mater. Sci. - 2004. - V. 35 A(9). - P. 2681-2695.
Li Q., Wang L., Teng J., et al. // Scr. Mater. - 2020. - V. 180. - P. 97-102.
Ovid’ko I.A., Valiev R.Z., and Zhu Y.T. // Prog. Mater. Sci. - 2018. - V. 94. - P.462-540.
Koch C.C. // J. Mater. Sci. - 2007. - V. 42(5). - P. 1403-1414.
 Nucleation and development of plasticity in nanocrystalline BCC iron under shear loading | Izvestiya vuzov. Fizika. 2020. № 11. DOI: 10.17223/00213411/63/11/17

Nucleation and development of plasticity in nanocrystalline BCC iron under shear loading | Izvestiya vuzov. Fizika. 2020. № 11. DOI: 10.17223/00213411/63/11/17