Damage mechanism analysis and protection method of ionizing radiation based on electromagnetic radiation characteristics | Izvestiya vuzov. Fizika. 2021. № 8. DOI: 10.17223/00213411/64/8/131

Damage mechanism analysis and protection method of ionizing radiation based on electromagnetic radiation characteristics

This paper studies the mechanism analysis and protection method of ionizing radiation damage based on Electromagnetic radiation characteristics. In this paper, the ferroelectric layer polarization model was established based on the ferroelectric field effect transistor (EFET) capacitance variation with gate voltage. This paper analyzed the ionizing radiation damage mechanism of electrical characteristics from two aspects of horizontal voltage and threshold voltage drift. The reinforcement design of the ferroelectric effect transistor was realized by using the anti-transient ionizing radiation reinforcement design method of the FPGA circuit. The three-fold redundancy design method based on instantaneous ionizing radiation effect was applied to protect electronic devices from ionizing radiation in reinforcement design. The results show that the threshold voltage drift caused by the oxide trap charge was proportional to the radiation dose; the threshold voltage drift caused by the interface trap charge is proportional to the radiation dose in the case of low dose, and the relationship is exponential when the radiation dose is greater than 60 krad SiO2; the delay signal of the FPGA circuit of the FEFET designed by the reinforcement has not been delayed again, to prove the effectiveness of ionizing radiation protection.

Download file
Counter downloads: 27

Keywords

electrical characteristics, ionizing radiation, damage mechanism, analysis, protection, method

Authors

NameOrganizationE-mail
Weiguo Zhu China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, University of south Chinazhuweiguo@nirp.chinacdc.cn
Dexing Lian China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, University of south Chinaliandexing@nirp.chinacdc.cn
Qingzhao Zhang China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, University of south Chinahangqingzhao@nirp.chinacdc.cn
Changsong Hou China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, University of south Chinanihao456455@sina.com
Всего: 4

References

Pei H.K., Yang X., and Hou L.Q. // J. China Acad. Electron. Info. Technol. - 2019. - V. 14. - P. 212-217.
Yang G.R., Xiao F., and Fan X.X. // J. Power Supply. - 2018. - V. 16. - P. 1-8.
Zhang W., Liu L.K., and Tang H. // Chinese J. Power Sources. - 2019. - V. 43. - P. 162-164+170.
Xu R.H., Li D.X., and Qu J.Z. // Autom. Instrum. - 2017. - V. 05. - P. 169-171.
Bao J., and Ou R.X., Jilin J. // Univ. (Sci. Ed.). - 2018. - V. 56. - P. 130-134.
Yan T., Zhao Y.C., and Cui D.X. // Comput. Simul. - 2019. - V. 36. - P. 73-77.
Yiğiterol F., Güllü H.H., and Bayraklı Ö. // J. Electron. Mater. - 2018. - V. 47. - P. 1-9.
Kim S. W., Khanal G.P., and Nam H.W. // J. Appl. Phys. - 2017. - V. 122. - P. 164105.
Silvia H., Davide B., and Maher T. // Appl. Phys. Express. - 2018. - V. 11. - P. 041002.
Kumar S., Goel E., Singh K., et al. // IEEE Trans. Electron Devices. - 2017. - V. 64. - P. 960-968.
Zheng X. F., Wang A.C., and Hou X.H. // Chinese Phys. Lett. - 2017. - V. 34. - P. 027301.
Kononov N. N., Davydova D.V., and Bubenov S.S. // Semiconductors. - 2019. - V. 53. - P. 552- 565.
Hyeuknam K., Seward B.R., and Benjamin S. // Physiol. Meas. - 2017. - V. 38. - P. 1748-1765.
Xin W., Brandon O., and Pragun B. // J. Forensic Sci. - 2017. - V. 63. - P. 415-421.
Manjari G., Tejas R., and Naik C.S. // Appl. Phys. Lett. - 2018. - V. 112. - P. 163502.
Ahn J. H., Choi S.J., and Im M. // Appl. Phys. Lett. - 2017. - V. 111. - P. 113701.
He Q. M., Mu W.X., and Dong H. // Appl. Phys. Lett. - 2017. - V. 110. - P. 093503.
Frey B., Rückert M., and Deloch L. // Immunol. Rev. - 2017. - V. 280. - P. 231-248.
Trebitsch M., Blaizot J., and Rosdahl J. // Mon. Notic. Roy. Astron. Soc. - 2017. - V. 470. - P. 224- 239.
Liang J., Zhou H.X., and Yang W.J. // Autom. Instrum. - 2017. - V. 7. - P. 152-155.
Fernández-Pousa C.R. // Appl. Math. Nonlinear Sci. - 2018. - V. 3. - P. 23-32.
Gao W., Zhu L., Guo Y., and Wang K. // J. Intelli. Fuzzy Syst. - 2017. - V. 33. - P. 3153-3163.
Gao W. and Wang W. // Colloq. Math. - 2017. - V. 149. - P. 291-298.
Khellat F. and Khormizi M.B. // Appl. Math. Nonlinear Sci. - 2018. - V. 3. - P. 15-22.
Lakshminarayana G., Vajravelu K., Sucharitha G., and Sreenadh S. // Appl. Math. Nonlinear Sci. - 2018. - V. 3. - P. 41-54.
Naeem M., Siddiqui M.K., Guirao J.L.G., and Gao W. // Appl. Math. Nonlinear Sci. - 2018. - V. 3. - P. 209-228.
Elmali C.S. and Ugr T. // Appl. Math. Nonlinear Sci. - 2020. - V. 5. - No. 1. - P. 475-478.
Hosamani S.M., Awati V.B., and Honmore R.M. // Appl. Math. Nonlinear Sci. - 2019. - V. 4. - No. 2. - P. 503-512.
 Damage mechanism analysis and protection method of ionizing radiation based on electromagnetic radiation characteristics | Izvestiya vuzov. Fizika. 2021. № 8. DOI: 10.17223/00213411/64/8/131

Damage mechanism analysis and protection method of ionizing radiation based on electromagnetic radiation characteristics | Izvestiya vuzov. Fizika. 2021. № 8. DOI: 10.17223/00213411/64/8/131