Analysis of residual stress in multilayer high-temperature ceramics
Based on the obtained analytical solution, the distributions of residual stress in disc-shaped samples of a composite consisting of layers of ceramics having various composition during cooling from the sintering temperature to room temperature are investigated. It is shown that it possible to control the position of the maximum stresses varying the thickness of the layers, and the presence of the diffusion zones in the interface area reduces the magnitude of dangerous stress proportionally to the thickness of these zones. It is noted that for engineering estimates, one should use the values of the physico-mechanical characteristics of the composite components corresponding to high temperature rather than average temperature.
Keywords
residual stress,
high-temperature ceramics,
composite,
multilayer structure,
analytical solutionAuthors
Zimina V.A. | Institute of Strength Physics and Materials Science SB RAS | miva@ispms.ru |
Smolin I.Yu. | Institute of Strength Physics and Materials Science SB RAS | smolin@ispms.ru |
Всего: 2
References
Fahrenholtz W.G., Hilmas G.E, Talmy I.G., et al. //j. Am. Ceram. Soc. - 2007. - V. 90 (5). - P. 1347-1364. - DOI: 10.1111/j.1551-2916.2007.01583.x
Golla B.R., Mukhopadhyay A., Basu B., et al. // Prog. Mater. Sci. - 2020. - V. 111. - Article 100651. - DOI: 10.1016/j.pmatsci.2020.100651.
Мировой Ю.А., Бурлаченко А.Г., Буякова С.П. // Изв. вузов. Физика. - 2020. - Т. 63. - № 5. - С. 38-44.
Parente P., Ortega Y., Savoini B., et al. // Acta Mater. - 2010. - V. 58. - P. 3014-3021. - DOI: 10.1016/j.actamat.2010.01.033.
De Portu G., Micele L., Sekiguchi Y., et al. // Acta Mater. - 2005. - V. 53. - P. 1511-1520. - DOI: 10.1016/j.actamat.2004.12.003.
Бурлаченко А.Г., Мировой Ю.А., Дедова Е.С. и др. // Изв. вузов. Физика. - 2019. - № 8. - Т 62. - С. 121-127. - DOI: 10.17223/00213411/62/8/121.
Акимов А.И., Акимов И.А., Сиделов Д.И. // Науч.-техн. вестн. Поволжья. - 2019. - № 6. - С. 88-91.
Кудинов В.А., Кузнецова А.Э., Ерёмин А.В. и др. // Вестн. Сам. гос. техн. ун-та. Сер. физ.-мат. науки. - 2013. - № 1(30). - С. 215-221.
Wen Y., Basaran C. // Mech. Mater. - 2004. - V. 36. - P. 369-385. - DOI: 10.1016/S0167-6636(03)00076-0.
Demidov V.N., Knyazeva A.G. // Appl. Mech. Mater. - 2015. - V. 756. - P. 540-545. - DOI: 10.4028/www.scientific.net/AMM.756.540.
Бондарчук Д.А., Федулов Б.Н., Федоренко А.Н. и др. // Вестн. ПНИПУ. Мех. - 2019. - № 3. - С. 17-26. - DOI: 10.15593/perm.mech/2019.3.02
Zhang G., Guo Q., Wang K., et al. // Mater. Sci. Eng. A. - 2008. - V. 488. - P. 45-49. - DOI: 10.1016/j.msea.2007.10.078.
Balokhonov R.R., Kulkov A.S., Zemlyanov A.V., et al. // Phys. Mesomech. - 2021. - V. 24. - P. 503-512. - DOI: 10.1134/S1029959921050015.
Yang Y. Temperature-Dependent Thermoelastic Analysis of Multidimensional Functionally Graded Materials: Doctoral Dissertation (University of Pittsburgh. 2015). - URL: http://d-scholarship.pitt.edu/26481/
Skripnyak V.V., Skripnyak V.A. // Lett. Mater. - 2017. - V. 7(4). - P. 407-411. - DOI: 10.22226/2410-3535-2017-4-407-411.