Numerical estimation of fracture toughness of heteromodulus ceramics based on zirconium carbide subjected to uniaxial compression
The design of new composite ceramic materials based on zirconium carbide is one of the effective methods of combating the inherent brittleness of the material. One of the key physical parameters characterizing the ability of a material to resist crack growth is fracture toughness. The paper presents a numerical method for estimating this parameter for heteromodulus ceramic materials based on zirconium carbide under uniaxial compression. The paper also shows that the introduction of low-modulus particles, in comparison with the matrix, delays fracture and reduces the integral brittleness of the material due to the implementation of additional fracture mechanisms. It is shown that based on the mechanical response of the mesovolume of the material with explicit consideration of the microstructure under uniaxial compression, it is possible to estimate the fracture toughness in satisfactory agreement with the experimental data.
Keywords
heteromodulus ceramics,
uniaxial compression,
fracture,
mathematical modeling,
fracture toughness,
zirconium carbideAuthors
Eremin M.O. | Institute of Strength Physics and Materials Science of SB RAS | eremin@ispms.ru |
Pazhin A.A. | Institute of Strength Physics and Materials Science of SB RAS | alvian99@mail.ru |
Всего: 2
References
Pazhin A.A., Mirovoi Yu.A. // AIP Conf. Proc. - 2020. - V. 2310. - P. 020246.
Balokhonov R.R., Kulkov A.S., Zemlyanov A.V., et al. // Phys. Mesomech. - 2021. - V. 24. - P. 503-512.
Drucker D.C., Prager W. // Q. Appl. Math. - 1952. - V. 10. - P. 157-165.
Eremin M. // Int. J. Rock Mech. Min. Sci. - 2020. - V. 133(104412). - P. 1-18.
Wilkins M.L.Computer Simulation of Dynamic Phenomena. - Berlin; Heidelberg; New York: Springer Verlag, 1999.
Buyakov A.S., Mirovoy Yu. A., Buyakova S.P. // AIP Conf. Proc. - 2019. - V. 2167. - P. 020046.
Yan N., Fu Q., et al. // Ceram.Int. - 2021. - V. 47. - Nо. 13. - P. 19090-19097.
Li S., Zhu Y., et al. //j. Alloys Compd. - 2021. - V. 860. - P. 158402.
Cook J., Gordon J.E., et al. // Proc. R. Soc. A: Math. Phys. Eng. Sci. - 1964. - V. 1391. - P. 508-520.
Dedova E.S., Burlachenko A.G., et al. // AIP Conf. Proc. - 2019. - V. 2167. - P. 020067.
Antadze M., Chedia R., et al. // Solid State Sci. - 2012. - V. 14. - P. 11-12.
Popov O., Vishnyakov V. // Adv. Appl. Ceram. - 2017. - V. 116. - Nо. 2. - P. 61-70.
Shabalin I.L., Wang Y., et al. // Adv. Appl. Ceram. - 2010. - V. 109(7). - P. 405-415.
Gömze L.A., Gömze L.N. // Mater. Sci. Forum. - 2010. - V. 729. - P. 43-48.
Shabalin I.L., Roach D.L., Shabalin L.I. //j. Eur. Ceram. Soc. - 2008. - V. 28. - Nо. 16. - P. 3165-3176.
Hasselman D.P.H., Becher P.F., Mazdiyasni K.S. // Mat. Sci. Eng. Tech. - 1980. - V. 11. - P. 82-92.
Rezaie A., Fahrenholtz W.G., Hilmas G.E. //j. Eur. Ceram. Soc. - 2007. - V. 27. - P. 2495-2501.
Мировой Ю.А., Бурлаченко А.Г., Буякова С.П. // Изв. вузов. Физика. - 2020. - Т. 63. - № 5. - С. 38-44.