Formation of Au-Co solid solutions via mechanical alloying at room and low temperatures according to X-ray diffraction data
Alloys of the gold-cobalt system characterized by limited solubility have been synthesized by the high-pressure torsion method. According to the data of X-ray diffraction analysis it was revealed that as a result of mechanical alloying, a phase of a supersaturated solid solution based on gold is formed in the composition of the alloy. Lowering the temperature to cryogenic leads to a redistribution of dissolved cobalt. These results to increase its concentration in the solid solution composition. The solid solution phase is in an ultrafine-grained state. Possible mechanisms for the formation of a supersaturated solid solution in the gold-cobalt system are discussed, taking into account the specific features of the severe plastic deformation and mechanical alloying processes.
Keywords
mechanical alloying,
severe plastic deformation,
high-pressure torsion,
supersaturated solid solution Au-Co,
ultrafine-grained materials,
x-ray diffractometry analysis,
cryodeformationAuthors
Tolmachev T.P. | Institute of Engineering Science, Ural Branch of the Russian Academy of Sciences; M.N. Miheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences | tol-machev@imp.uran.ru |
Patselov A.M. | M.N. Miheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences | patselov@imp.uran.ru |
Pilyugin V.P. | M.N. Miheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences; Ural Federal University (UrFU) | pilyugin@imp.uran.ru |
Solov’eva Yu.V. | Tomsk State University of Architecture and Building | j_sol@mail.ru |
Churbaev R.V. | M.N. Miheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences | churbaev@imp.uran.ru |
Plotnikov A.V. | M.N. Miheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences | plotnikov@imp.uran.ru |
Всего: 6
References
Дриц М.Е., Будберг П.Б., Бурханов Г.С. и др. Свойства элементов: справочник / под ред. М.Е. Дрица. - М.: Металлургия, 1985. - 672 с.
Okamoto H., Massalski T.B., Hasebe M., Nishizawa T. // Bull. Alloy Phase Diagrams. - 1985. - V. 6. - P. 449-454.
Suguihiro N.M., Torres W.S., Nunes W.C., et al. // Mater. Chem. Phys. - 2021. - V. 266. - No. 1 - P. 124517.
Zhu W., Zhao C., Zhou J., et al. //j. Alloys Compd. - 2018. - V. 748. - P. 961-969.
Gunderov D., Prokoshkin S., Churakova A., et al. // Mater. Lett. - 2021. - V. 283 - P. 128819.
Попова Е.Н., Дерягина И.Л. // ФММ. - 2020. - T. 121. - № 12. - C. 1285-1291.
Толмачев Т.П., Пилюгин В.П., Пацелов А.М. и др. // Изв. вузов. Физика. - 2018. - Т. 61. - № 5. - С. 121-126.
Барабаш О.М., Коваль Ю.Н. Структура и свойства металлов и сплавов. Кристаллическая структура металлов и сплавов: справочник. - Киев: Наукова думка, 1986. - 598 с.
Zhilyaev A.P., Langdon T.G. // Prog. Mater. Sci. - 2008. - V. 53. - Iss. 6. - P. 893-979.
Tolmachev T.P., Pilyugin V.P., Ancharov A.I., et al. // Phys. Metals Metallogr. - 2016. - V. 117. - No. 2 - P. 135-142.
Lim D.J., Marks N.A., Rowles M.R. // Carbon. - 2020. - V. 162 - P. 475-480.
Stokes A.R., Wilson A.J.C. // Proc. Phys. Soc. - 1944. - V. 56 - P. 174-181.
Nath D., Singh F., Das R. // Mater. Chem. Phys. - 2020. - V. 239 - P. 122021.
Математическое моделирование от междислокационных взаимодействий до макроскопической деформации / под. ред. В.А. Старенченко. - Томск: Изд-во Том. гос. архит.-строит. ун-та, 2015. - 540 с.
Pantyukhova O., Starenchenko V., Starenchenko S., et al. // Proceedings of the II All-Russian Scientific Conference of Young Scientists «Advanced Materials in Technology and Construction». - 2016. - Р. 040002.
Старенченко В.А., Черепанов Д.Н., Селиваникова О.В. // Изв. вузов. Физика. - 2015. - Т. 58. - № 4. - С. 16-23.
Ungár T., Schafler E., Hanák P., et al. // Mater. Sci. Eng. A. - 2007. - V. 462. - Iss. 1-2. - P. 398-401.
Miedema A.R., de Châtel P.F., de Boer F.R. // Physica B+C. - 1980. - V. 100. - Iss. 1. - P. 1-28.
Mathaudhu S.N. // Metall. Mater. Trans. A. - 2020. - V. 51. - P. 6020-6044.