Study of the composition, structure, optical properties and radiation stability of ZnO powder modified with SiO2 nanoparticles
The composition, structure, diffuse reflectance spectra in the region of 0.3-2.2 μm and in the IR region and radiation stability under irradiation with electrons with an energy of 30 keV in the fluence range up to 9 × 1016 cm-2 of ZnO powder modified with SiO2 nanoparticles were investigated. It was found that after modification and irradiation, new compounds are not formed, in the IR spectra the intensity of some bands decreases, the reflectivity decreases in the range from 0.4 to 2.2 μm. An absorption band appears in the visible region with a maximum at 420 nm, caused by intrinsic point defects of ZnO; its intensity increases with increasing electron fluence. In the near-IR region, after irradiation, induced absorption appears due to free electrons. Comparison with unmodified ZnO powder showed the effectiveness of modification to increase radiation stability.
Keywords
powders,
zinc oxide,
modification,
nanoparticles,
irradiation,
optical propertiesAuthors
Mikhailov M.M. | Tomsk State University of Control Systems and Radioelectronics | membrana2010@mail.ru |
Lapin A.N. | Tomsk State University of Control Systems and Radioelectronics | alexey_nl@sibmail.com |
Yuryev S.A. | Tomsk State University of Control Systems and Radioelectronics | yusalek@gmail.com |
Mazurenko E.E. | Tomsk State University of Control Systems and Radioelectronics | mese98.98@mail.ru |
Всего: 4
References
Neshchimenko V., Li C., Mikhailov M., Lv J. // Nanoscale. - 2018. - V. 10 (47). - P. 22335-22347.
Kositsyn L.G., Mikhailov M.M., Kuznetsov N.Y., Dvoretskii M.I. // Instrum. Exp. Tech. - 1985. - V. 28. - P. 929-932.
Johnson F.S. //j. Meteorol. - 1954. - V. 11. - No. 6. - P. 431-439.
ASTM E490-00a Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables. - 2019.
ASTM E903-96 Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres. - 2005.
Воробьева Н.А. Нанокристаллический ZnO (M) (M = Ga, In) для газовых сенсоров и прозрачных электродов: дис.. к.х.н. - М., 2015. - 180 c.
Davydov A. Molecular Spectroscopy of Oxide Catalyst Surfaces. - Chichester: John Wiley & Sons Ltd., 2003. - 641 p.
Boccuzzi F., Morterra C., Scala R., Zecchina A. //j. Chem. Soc., Faraday Trans. II. - 1981. - V. 77. - P. 2059-2066.
Boccuzzi F., Borello E., Zecchina A., et al. //j. Catalysis. - 1978. - V. 51. - P. 150-159.
Saussey J., Lavalley J.-C., Bovet C. //j. Chem. Soc., Faraday Trans. I. - 1982. - V. 78. - P. 1457-1463.
Keyes B.M., Gedvilas L.M., Li X., Coutts T.J. //j. Cryst. Growth. - 2005. - V. 281. - P. 297-302.
Борило Л.П. Синтез и физико-химические закономерности формирования золь-гель методом тонкопленочных и дисперсных наноматериалов оксидных систем элементов III-V групп: дис. … д.х.н. - Томск, 2003. - 286 c.
Lange P. //j. Appl. Phys. - 1989. - V. 66. - No. 1. - P. 201-204.
Ильвес В.Г., Зуев М.Г., Соковнин С.Ю., Мурзакаев А.М. // ФТТ. - 2015. - Т. 57. - № 12. - C. 2439-2445.
Аверин И.А., Карманов А.А., Мошников В.А. и др. // ФТТ. - 2015. - Т. 57. - № 12. - C. 16-24.
Mikhailov M.M., Verevkin A.S. //j. Mater. Res. - 2004. - V. 19. - No. 2. - P. 535-541.