Theoretical and real strength of crystals: physical reasons for the difference
Within the framework of existing theories, the initiation of plastic shear and nucleation cracks in perfect crystals is possible only at a deforming stress close to the theoretical strength. The paper shows that a perfect crystal, considered as an open system of nuclei and electrons, loses its stability at applied stresses that are orders of magnitude smaller than the theoretical strength. In this case, it is not necessary to involve the concept of the presence of various types of defects in the volume and in the surface layer of the crystal. The physical reason for the instability is the excitation of dynamic displacements determined by nonadiabatic transitions of Landau-Zener atoms between intersecting potential energy surfaces in open nonequilibrium systems. A qualitative explanation of the experimentally observed results is given.
Keywords
crystal,
deformation,
theoretical strength,
defects,
adiabatic approximation,
non-adiabatic atomic dynamics,
dynamic instability,
structural relaxationAuthors
Khon Yu.A. | Institute of Strength Physics and Materials Science of SB RAS | khon@ispms.ru |
Всего: 1
References
Коротаев А.Д. Элементы теории дислокаций. - Томск: Изд-во НТЛ, 2020. - 212 с.
Борн М., Кунь Х. Динамическая теория кристаллических решеток. - М.: ИЛ, 1958. - 488 с.
Griffith A.A. // Philos. Trans. R. Soc. London. - 1921. - V. 221. - P. 163. -198.
Соколов С.А., Тулин Д.Е. // Физическая мезомеханика. - 2021. - V. 24 (2). - C. 34-40.
Кожевникова М.А. // Физическая мезомеханика. - 2021. - V. 24 (2). - C. 93-106.
Jin Y., Wang Y., Khachaturyan A. // Appl. Phys. Lett. - 2001. - V. 79. - P. 3071-3073.
Zhurkov S.N., Korsukov V.E., Luk'yanenko A.S., et al. // JETP Letters. - 1990. -V. 51. - P. 370-372.
Давыдов А.М. Квантовая механика. - М.: Наука, 1973. - 703 с.
Инденбом В.Л. // Физика кристаллов с дефектами. - Тбилиси, 1966. - Т. 1. - С. 5-106.
Hohenberg P., Kohn W. // Phys.Rev. - 1964. - V.136. - P. B864-B871.
Tully J.C. //j. Chem. Phys. - 2012. - V. 137. - P. 22A301.
Von Born M., Oppenheimer R. // Ann. Phys. - 1927. - V. 84. - No. 20. - P. 457-484.
Psakhie S.G., Zolnikov K.P., Kryzhevich D.S., Lipnitskii A.G. // Phys. Lett. - 2006. - V. A 349. - P. 509-512.
Rodney D., Proville L. // Phys. Rev. - 2009. - V. B79. - P. 094108.
Landau L. // Phys. Z. Sowjetunion. - 1932. - V. 2. - P. 46-51.
Zener C. // Proc. R. Soc. - 1932. - V. A 137. - P. 696-702.
Egorushkin V.E., Mel'nikova N.V. // JETP. - 1993. - V.1. - P.103-110.
Zhu C., Nakamura H. //j. Chem. Phys. - 1994. - V. 101. - P. 10630-10647.
Zhu C., Nakamura H. //j. Chem. Phys. - 1995. - V. 102. - P. 7448-7461.
Yue Ling, Yu Le, Xu Chao, et al. // Chem. Phys. Chem. - 2017. - V. 18. - Iss. 10. - P. 1274-1287. - DOI: 10.1002/cphc.201700049.
Kapral Raymond //j. Phys.: Condens. Matter. - 2015. - V. 27. - P. 073201.
Зуев Л.Б., Хон Ю.А.// Физич. мезомех. - 2021. - Т. 24. - № 6. - С. 5-14.
Хон Ю.А., Зуев Л.Б.// Физич. мезомехан. - 2021. - Т. 24. - № 6. - С. 15-24.
Хон Ю.А.// Изв. вузов. Физика. - 2021. - Т. 64. - № 4. - С. 44-49.
Хон Ю.А.// Изв. вузов. Физика. - 2022. - Т. 65. - № 3. - С. 140-145.