Ferroelectric multiphase composites based on poly(lactic acid)
Ferroelectric multiphase PLA-based composites filled with barium titanate (BaTiO3; BT) and a small amount of carbon nanotubes (CNTs) have been developed and characterized in this work. An abnormal increase in the melt flow index of two-phase PLA/BaTiO3 composites of about 55% compared to the neat PLA at low filler content was found. The permittivity of the two-phase PLA/BaTiO3 composite at a filler content of 40 wt.% in the low frequency range increases by about two times compared to that for the neat PLA, whereas for the three-phase PLA/BaTiO3/CNT composite it increases by more than 40 times at the same filler content and a small amount of carbon nanotubes (0.05 wt.%). In this case, the value of loss factor tangent delta for these composites is about 0.04 and 0.6 respectively. SEM images of the fractured surfaces of the samples demonstrate quasi-uniform distribution of fillers over the composite volume.
Keywords
poly(lactic acid),
barium titanate,
carbon nanotubes,
polymer ferroelectric compositesAuthors
Lebedev S.M. | National Research Tomsk Polytechnic University | lsm70@mail.ru |
Gefle O.S. | National Research Tomsk Polytechnic University | gefleos@mail.ru |
Всего: 2
References
Гефле О.С., Лебедев С.М., Похолков Ю.П. Барьерный эффект в диэлектриках. - Томск: ТМЛ-Пресс, 2007.
Gefle O.S., Lebedev S.M., Uschakov V.Y. //j. Phys. D: Appl. Phys. - 1997. - V. 30. - P. 3267-3273.
Chen Q., Shen Y., Zhang S., Zhang Q.M. // Ann. Rev. Mater. Res. - 2015. - V. 45. - P. 433-458.
Fan Y., Huang X., Wang G., Jiang P. //j. Phys. Chem. C. - 2015. - V. 119. - 27330. - DOI: 10.1021/acs.jpcc.5b09619.
Yamashita T., Okada H., Itoh T., Kobayashi T. // Jpn. J. Appl. Phys. - 2015. - V. 54. - 10ND08. - DOI: 10.7567/JJAP.54.10ND08.
Ruschau G.R., Newham R.E., Runt J., Smith B.E. // Sens. Actuators. - 1989. - V. 20. - P. 269-275.
Post J.E. // Microwave Opt. Technol. Lett. - 2005. - V. 46. - P. 487-492.
Ni Q.-Q., Zhu Y.-F., Yu L.-J., Fu Y.-Q. // Nanoscale Res. Lett. - 2015. - V. 10. - P. 174-181. - DOI: 10.1186/s11671-015-0875-6.
Kapat K., Shubhra Q.T.H., Zhou M., Leeuwenburgh S. // Adv. Funct. Mater. - 2020. - V. 30. - P. 1909045. https://doi.org/10.1002/adfm.201909045.
Jacob J., More N., Kalia K., Kapusetti G. // Inflammat. Regenerat. - 2018. - V. 38. - P. 2-10. - DOI: 10.1186/s41232-018-0059-8.
Li Y., Dai X., Bai Y., et al. // Int. J. Nanomed. - 2017. - V. 12. - P. 4007-4018.
Rajabi A.H., Jaffe M., Arinzeh T.L. // Acta Biomater. - 2015. - V. 24. - P. 12-23. - DOI: 10.1016/j.actbio.2015.07.010.
Kemppi H., Finnilä M.A., Lorite G.S., et al. // Colloid. Surfac. B: Biointerfaces. - 2021. - V. 199. - P. 111530. - DOI: 10.1016/j.colsurfb.2020.111530.
Вул Б.М. // Электричество. - 1946. - № 3. - С. 12-20.
Вул Б.М. и Гольдман И.М. // ДАН СССР. - 1945. - Т. 49. - С. 179-182.
Yasuda I. //j. Jpn. Orthop. Surg. Soc. - 1954. - V. 28. - P. 267-279.
Fukada E., Yasuda I. //j. Phys. Soc. Jpn. - 1957. - V. 12. - P. 1158-1162.
Bassett C.A.L. // Calcified Tissue Res. - 1967. - V. 1. - P. 252-272.
Supronowicz P.R., Ajayan P.M., Ullmann K.R., et al. //j. Biomed. Mater. Res. - 2002. - V. 59. - P. 499-506. - DOI: 10.1002/jbm.10015.
Sitharaman B., Shi X., Walboomers H.F., et al. // Bone. - 2008. - V. 43. - P. 362-370. - DOI: 10.1016/j.bone.2008.04.013.
Nawanil C., Panprom P., Khaosa-ard K., et al. // Int. Conf. Sci. Technol. Emerging Mater. - 2010. - AIP Conf. Proc. - 020029-1-020029-7. - DOI: 10.1063/1.5053205.
Dang Z.-M., Yao S.-H., Yuan J.-K., Bai J. //j. Phys. Chem. C. - 2010. - V. 114. - P. 13204-13209. - DOI: 10.1021/jp103411c.
Lebedev S.M., Gefle O.S., Amitov E.T., et al. // Polym. Test. - 2017. - V. 58. - P. 241-248. - DOI: 10.1016/j.polymertesting.2016.12.033.
Mancuso E., Shah L., Jindal S., et al. // Mater. Sci. Eng. C. - 2021. - V. 126. - P. 112192. - DOI: 10.1016/j.msec.2021.112192.
Ribeiro C., Sencadas V., Correia D.M., Lanceros-Méndez S. // Colloid. Surfac. B: Biointerfaces. - 2015. - V. 136. - P. 46-55. - DOI: 10.1016/j.colsurfb.2015.08.043.
Tandon B., Blaker J.J., Cartmell S.H. // Acta Biomaterialia. - 2018. - V. 73. - P. 1-20. - DOI: 10.1016/j.actbio.2018.04.026.
Харитонов Е.В. Диэлектрические материалы с неоднородной структурой. - М.: Радио и связь, 1983.
Stauffer D., Aharony A.Introduction to Percolation Theory. - 2nd Ed. - London: Taylor and Francis, 1992.
Kapitza P.L. Collected papers of P.L. Kapitza. V. 2 / ed. D. ter Haar. - Oxford: Pergamon Press, 1965.
Shenogin S., Xue L., Ozisik R., et al. //j. Appl. Phys. - 2004. - V. 95. - P. 8136-8144.