Characterization of plasma jets formed by atmospheric-pressure glow discharge in the argon flow
The paper considers the features of formation of plasma jets based on atmospheric pressure glow discharge in an argon flow. The discharge was sustained in gas discharge systems of "gliding arc" type and non-steady state low-current plasmatron at average currents from 50 to 250 mA and gas mass flow rate up to 0.5 g/s. To estimate the parameters of positive column plasma, the data obtained by oscillography in combination with the of discharge image analysis are used. Based on the data obtained, a comparative analysis of discharges in argon and air flow is made and the features of discharge maintenance in argon flow are revealed. For the gas-discharge system of coaxial plasmatron, the parameters of plasma jet are diagnosed by measuring the temperature of gas and current of charged particles on special diagnostic electrode that is placed in the jet area. Based on the experimental results analysis, the features of flowing an electrical current in the diagnostic gap were determined and the concentration of charged particles in the plasma jet region in an argon flow were estimated.
Keywords
glow discharge,
plasma jet,
atmospheric-pressure discharge,
low-temperature plasma,
discharge in a gasAuthors
Nekhoroshev V.O. | Institute of High Current Electronics SB RAS | nvo@lnp.hcei.tsc.ru |
Korolev Y.D. | Institute of High Current Electronics SB RAS | korolev@lnp.hcei.tsc.ru |
Landl N.V. | Institute of High Current Electronics SB RAS | landl@lnp.hcei.tsc.ru |
Frants O.B. | Institute of High Current Electronics SB RAS | frants@lnp.hcei.tsc.ru |
Kasyanov V.S. | Institute of High Current Electronics SB RAS | kasianov_vs@bk.ru |
Всего: 5
References
Park G.Y., Park S.J., Choi M.Y., et al. // Plasma Sources Sci. Technol. - 2012. - V. 21. - No. 4. - Art. 043001.
Kusano Y. //j. Adhes. - 2014. - V. 90. - No. 9. - P. 755-777.
Winter J., Brandenburg R., Weltmann K.D. // Plasma Sources Sci. Technol. - 2015. - V. 4. - No. 6. - Art. 064001.
Malik M.A. // Plasma Chem. Plasma Process. - 2016. - V. 36. - No. 3. - P. 737-766.
Demkin V.P., Melnichuk S.V., Demkin O.V., et al. // Phys. Plasmas. - 2016. - V. 23. - No. 4. - Art. 043509.
Engelhardt M., Ries S., Hermanns P., et al. //j. Phys. D: Appl. Phys. - 2017. - V. 50. - No. 37. - Art. 375201.
Akishev Y., Aponin G., Petryakov A., et al. //j. Phys. D: Appl. Phys. - 2018. - V. 51. - No. 27. - Art. 274006.
Королев Ю.Д., Нехорошев В.О., Франц О.Б. и др. // Изв. вузов. Физика. - 2019. - Т. 62. - № 11. - С. 85-91.
Белоплотов Д.В., Бугаев А.С., Гушенец В.И. и др. // Изв. вузов. Физика. - 2022. - Т. 65. - № 11. - С. 11-18.
Dickenson A., Britun N., Nikiforov A., et al. // Phys. Chem. Chem. Phys. - 2018. - V. 20. - No. 45. - P. 28499-28510.
Akishev Y.S. // Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Tekhnol. - 2019. - V. 62. - No. 8. - P. 26-60.
Wang C.V., Wang B.W., Liu S.Z., et al. // Chemistryselect. -2020. - V. 5. - No. 44. - P. 13781-13787.
Gamaleev V., Iwata N., Hiramatsu M., et al. // Jpn. J. Appl. Phys. - 2020. - V. 21. - Art. SHHF04.
Korolev Y.D., Frants O. B., Landl N. V., et al. // Plasma Sources Sci. Technol. - 2014. - V. 23. - No. 5. - Art. 054016.
Korolev Y.D., Frants O.B., Landl N.V., et al. // Phys. Plasmas. - 2017. - V. 24. - No. 10. - Art. 103526.
Korolev Y.D., Nekhoroshev V.O., Frants O.B., et al. // Plasma Chem. Plasma Process. - 2019. - V. 39. - No. 6. - P. 1519-1532.
Korolev Y.D., Nekhoroshev V.O., Frants O.B., et al. //j. Phys.Commun. - 2019. - V. 3. - No. 8. - Art. 085002.
Weiman J., Tang J., Wang Y., et al. // Sci. Rep. - 2020. - V. 4. - DOI: 10.1038/srep06323.
Bowe J.C. //j. Exp. Theor. Phys. - 1960. - V. 117. - No. 6. - P. 1411-1415.
Pack J.L., Phelps A.V. // Phys. Rev. - 1961. - V. 121. - No. 3. - P.798-805.
Pack J.L., Voshall R.E., Phelps A.V. // Phys. Rev. - 1962. - V. 127. - No. 6. - P. 2084-2089.