Criteria and dynamics of electrical breakdown of gas-filled diode on left branch of Paschen curve
The article presents the results of theoretical analysis of threshold pressures and voltages that ensure breakdown of a planar gap filled with low-pressure nitrogen. Three approaches to calculating threshold pressures are revealed: 1) based on the Townsend gas ionization coefficient, 2) based on a diode with a plasma cathode, and 3) based on a diode with a field-emission cathode. For the first and second approaches, the threshold pressures are estimated from above and below, and the third approach allows specifying the breakdown conditions between these boundaries of the critical regions. The calculation of the spatial-temporal dynamics of the development of discharge with the field-emission cathode is performed. It demonstrates that at the threshold pressure and voltage, low-pressure gas discharge is formed within 100 ns. Good agreement between the predictions of the threshold criteria and the kinetic calculations of the discharge dynamics is demonstrated.
Keywords
electrical breakdown of gas,
low pressure discharge,
gas discharge simulationAuthors
Kozyrev Andrey V. | Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences | kozyrev@to.hcei.tsc.ru |
Semeniuk Natalia S. | Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences | semeniuk@to.hcei.tsc.ru |
Всего: 2
References
Королев Ю.Д., Месяц Г.А. Физика импульсного пробоя в газах. - Екатеринбург: УРО-пресс, 1998. - 224 c.
Benilov M. S., Benilova L.G. // J. Phys. D: Appl. Phys. - 2010. - V. 43. - P. 345204.
Vorobyov M.S., Koval N.N., Sulakshin S.A. // Instrum. Exp. Tech. - 2015. - V. 58. - No. 5. - P. 687-695. - DOI: 10.1134/s0020441215040132.
Gavrilov N.V., Mesyats G.A., Radkovski G.V., Bersenev V.V. // Surf. Coat. Technol. - 1997. - V. 96. - P. 81-88.
Казаков А.В., Бурдовицин В.А., Медовник А.В. и др. // Изв. вузов. Физика. - 2016. - Т. 59. - № 9/2. - С. 227-231.
Gudmundsson J.T. // Plasma Sources Sci. Technol. - 2020. - V. 29. - P. 113001.
Соловьев А.А., Сочугов Н.С., Оскомов К.В., Работкин С.В. // Физика плазмы. - 2009. - T. 35. - № 5. - С. 443-452.
Hartmann W., Lins G. // IEEE Trans. Plasma Sci. - 1993. - V. 21. - P. 506-510.
Zhang J., Liu X. // Phys. Plasmas. - 2018. - V. 25. - P. 013533.
Korolev Y.D., Geyman V.G., Frants O.B., et al. // IEEE Trans. Plasma Sci. - 2001. - V. 29. - P. 796-801.
Metel A.S., Grigoriev S.N., Melnik Y.A., Panin V.V. // Plasma Phys. Rep. - 2009. - V. 35. - P. 1058-1067.
Akhmadeev Y.H., Denisov V.V., Koval N.N., et al. // Plasma Phys. Rep. - 2017. - V. 43. - P. 67-74.
Козырев А.В., Кожевников В.Ю., Коковин А.О., Медведев С.Ю. // Изв. вузов. Физика. - 2021. - Т. 64. - № 9. - С. 59-64.
Kozyrev A.V., Korolev Yu.D., Rabotkin V.G., Shemyakin I. A. // J. Appl. Phys. - 1993. - V. 74. - No. 9. - P. 5366-5371. - DOI: 10.1063/1.354239.
Koval N.N., Korolev Y.D., Ponomarev V.B., et al. // Sov. J. Plasma Phys. - 1989. - V. 15. - P. 432-435.
Kozyrev A.V., Semeniuk N.S., Gorkovskaia D. // Plasma Sci. Technol. - 2025. - DOI: 10.1088/2058-6272/adca8d.
Fowler R.H., Nordheim L. // Proc. R. Soc. London. Ser. A, Containing Papers of a Mathematical and Physical Character. - 1928. - V. 119. - No. 781. - P. 173-181. - DOI: 10.1098/rspa.1928.0091.
Murphy E.L., Good R.H. // Phys. Rev. - 1956. - V. 102(6). - P. 1464. - DOI: 10.1103/PhysRev.102.1464.
Chepusov A., Cholakh S., Kislov E., et al. // Phys. Status Solidi C: Current Topics in Solid State Physics. - 2013. - V. 10. - No. 4. - P. 614-618. - DOI: 10.1002/pssc.201200865.
Il’ina M.V., Soboleva O.I., Khubezov S.A., et al. // J. Low Power Electron. Appl. - 2023. - V. 13(1). - P. 11. - DOI: 10.3390/jlpea13010011.
Kozyrev A., Kozhevnikov V., Semeniuk N. // Plasma Sources Sci. Technol. - 2020. - V. 29. - P. 125023. - DOI: 10.1088/1361-6595/abbf95.