Formation of the structure and properties of the MgAl2O4:ZrO2 composite by plasma-arc synthesis
This work is devoted to the study of synthesis and phase formation processes in compositions based on aluminum-magnesium spinel (MgAl2O4) with the addition of zirconium dioxide (ZrO2). These materials are of great interest due to their high thermal stability, chemical resistance, and mechanical properties, which make them highly promising for use in modern technology. The study aims to investigate the effect of ZrO2 addition (from 5 to 20 wt.%) on the structure and physical properties of the MgAl2O4:ZrO2 composite. X-ray diffraction analysis has shown that the presence of Mg2+ cations in the melt stimulates the stabilization of ZrO2 in the cubic phase. Using scanning electron microscopy and energy-dispersive analysis, it has been proven that the introduction of ZrO2 leads to the formation of special interfacial structures, including the localization of the eutectic phase (Mg:Al:Zr - 11.40:26.47:27.67 wt.%) predominantly along grain boundaries with two morphological features: continuous dendritic inclusions and localized linear-columnar structural colonies. The features of sintering ceramic products based on plasma synthesis products at temperatures of 1400-1600 °C have been determined.
Keywords
spinel,
zirconium dioxide,
plasma melting,
synthesis,
composites,
microstructureAuthors
| Shekhovtsov Valentin V. | Tomsk State University of Architecture and Building | shehovcov2010@yandex.ru |
| Ulmasov Akhrorbek B. | Tomsk State University of Architecture and Building | i@aulmasov.ru |
Всего: 2
References
Jiang P., Yin Gx., Yan Mw., et al. // Int. J. Miner. Metall. Mater. - 2017. - V. 24. - P. 332-341. - DOI: 10.1007/s12613-017-1412-7.
Ganesh I., Srinivas B., Johnson R., et al. // British Ceram. Trans. - 2013. - V. 102. - No. 3. - P. 119-128. - DOI: 10.1179/096797803225001632.
Francois Marais, Iakovos Sigalas, David Whitefield // Ceram.Int. - 2022. - V. 48. - No. 1. - P. 563-568. - DOI: 10.1016/j.ceramint.2021.09.134.
Mingwei Yan, Yong Li, Guoxiang Yin, et al. // Ceram.Int. - 2017. - V. 43. - No. 8. - P. 5914-5919. - DOI: 10.1016/j.ceramint.2017.01.082.
Xinhong Liu, Yongyi Ling, Xueun Tian, et al. // Ceram.Int. - 2024. - V. 50. - No. 20. - P. 38485-38494. - DOI: 10.1016/j.ceramint.2024.07.213.
Морозова Л.В., Дроздова И.А., Калинина М.В. // Физ. хим. стекла. - 2019. - Т. 45. - № 5. - С. 485-496. - DOI: 10.1134/S0132665119050093.
Ganesh Ibram, Ferreira J.M.F. // Ceram.Int. - 2009. - V. 35. - No. 1. - P. 259-264. - DOI: 10.1016/j.ceramint.2007.10.006.
Sanjay Krishna Mohan, Ritwik Sarkar // Ceram.Int. - 2016. - V. 42. - No. 8. - P. 10355-10365. - DOI: 10.1016/j.ceramint.2016.03.167.
Shuoyan Zhai, Juncheng Liu, Jin Wang // Ceram.Int. - 2016. - V. 42. - No. 7. - P. 8079-8084. - DOI: 10.1016/j.ceramint.2016.02.007.
El-Amir A.A.M., Li S., Abdelgawad M., et al. // J. Korean Ceram. Soc. - 2021. - V. 58. - P. 574-582. - DOI: 10.1007/s43207-021-00126-4.
Li P., Sui Y., Jiang Y., et al. // J. Mater. Eng. Perform. - 2022. - V. 331. - P. 1473-1481. - DOI: 10.1007/s11665-024-10293-0.
Гынгазов С.А., Васильев И.П., Болтуева В.А., Власов В.А. // Изв. вузов. Физика. - 2023. - Т. 66. - № 9. - С. 29-36. - DOI: 10.17223/00213411/66/9/3.
Шеховцов В.В., Волокитин О.Г., Ушков В.А., Зорин Д.А. // Изв. вузов. Физика. - 2023. - Т. 66. - № 1. - С. 3-8. - DOI: 10.17223/00213411/66/1/3.
Шеховцов В.В., Скрипникова Н.К., Волокитин О.Г., Гафаров Р.Е. // Физ. хим. стекла. - 2022. - Т. 48. - № 5. - С. 630-634. - DOI: 10.31857/S0132665121100619.
Шеховцов В. В., Скрипникова Н.К., Улмасов А.Б. // Неорган. материалы. - 2023. - Т. 59. - № 8. - С. 888-895. - DOI: 10.31857/S0002337X23080146.
Abdullah Al Mahmood, Gafur M.A., Hoque M.E. // Mater. Sci. Eng. A. - 2017. - V. 707. - P. 118-124. - DOI: 10.1016/j.msea.2017.09.048.
Han Y., Zhu J. // Top. Catal. - 2013. - V. 56. - No. 15-17. - P. 1525-1541. - DOI:10.1007/s11244-013-0156-5.