Modeling of terahertz pulse temporal profiles generated by photoconductive semiconductor antennas
Based on Maxwell's equations in the paraxial approximation, analytical expressions were derived to describe the spatiotemporal dynamics of single-cycle terahertz (THz) pulses in an optical medium with refractive index dispersion. It is shown that during propagation in the far-field diffraction zone, the THz pulse shape transforms from single-cycle to one-and-a-half-cycle oscillations, accompanied by a spectral shift toward higher frequencies. Comparison with experimental spectra demonstrated that the proposed formulas successfully describe the single-cycle emission of THz pulses generated by photoconductive antennas under excitation by a Ti:Sa laser.
Keywords
photoconductive antennas,
Gaussian beam,
pulsed terahertz radiation,
paraxial diffractionAuthors
| Burmistrov Evgenii R. | Lomonosov Moscow State University | burmistrover@my.msu.ru |
| Avakyants Lev P. | Lomonosov Moscow State University | avakyants@genphys.phys.msu.su |
Всего: 2
References
Popov V.V. // J. Infrared Millimeter and Terahertz Waves. - 2011. - V. 32. - P. 1178.
Pashnev D., Kaplas T., Korotyeyev V., et al. // Appl. Phys. Lett. - 2020. - V. 117. - No. 5. - P. 051105.
Meng P., Zhao X., Yang X., et al. // J. Eur. Ceram. Soc. - 2019. - V. 39. - No. 15. - P. 4824.
Kašalynas I. // 40th International Conference on Infrared Millimeter and Terahertz Waves (IRMMW-THz). - Hong Kong, 2015. - P. 1.
Yang S.H., Hashemi M.R., Berry C.W., Jarrahi M. // IEEE Trans. Terahertz Sci. Technol. - 2014. - V. 4. - No. 5. - P. 575.
Klimov E., Klochkov A., Solyankin P., et al. // Int. J. Mod. Phys. B. - 2024. - V. 38. - No. 24. - P. 2450378.
Saleem M.F., Ashraf G.A., Iqbal M.F., et al. // Int. J. Opt. - 2023. - V. 2. - P. 5619799.
Kuznetsov K., Klochkov A., Leontyev A., et al. // Electronics. - 2020. - V. 9. - No. 3. - P. 495.
Kaplan A.E. // J. Opt. Soc. Am. B. - 1998. - V. 15. - No. 3. - P. 951.
Козлов С.А., Самарцев В.В. Основы фемтосекундной оптики. - М.: Физматлит, 2009. - 292 с.
Gaafar M.A., Baba T., Eich M., Petrov A.Y. // Nature Photon. - 2019. - V. 13. - P. 737.
Brabec T., Krausz F. // Phys. Rev. Lett. - 1997. - V. 78. - No. 17. - P. 3282.
Hine G.A., Doleans M. // Phys. Rev. A. - 2021. - V. 104. - No. 3. - P. 033515.
Ivanov M., Thiele I., Bergé L., et al. // Opt. Lett. - 2019. - V. 44. - No. 15. - P. 3781.
Rozanov N.N. // Opt. Spectrosc. - 2003. - V. 95. - No. 2. - P. 307.
Nabilkova A.O., Oparin E.N., Shumigai V.S., et al. // J. Opt. Technol. - 2022. - V. 89. - No. 11. - P. 654.
Zhang X.C., Shkurinov A., Zhang Y. // Nature Photon. - 2017. - V. 11. - No. 1. - P. 16.
Novelli F., Ruiz Pestana L., Bennett K.C., et al. // J. Phys. Chem. B. - 2020. - V. 124. - No. 24. - P. 5043.
Rasekh P., Saliminabi M., Yildirim M., et al. // Opt. Express. - 2020. - V. 28. - No. 3. - P. 3155.
Nahata A., Heinz T.F. // IEEE J. Selected Topics in Quantum Electron. - 1996. - V. 2. - No. 3. - P. 701.
Kuznetsov K.A., Klochkov A.N., et al. // Electronics. - 2020. - V. 9. - P. 495.
Бурмистров Е.Р., Авакянц Л.П. // ЖЭТФ. - 2025. - Т. 167. - № 5. - С. 1.
Бурмистров Е.Р., Авакянц Л.П. // Вестник Московского университета. Сер. 3: Физика. - 2021. - № 5. - С. 45.