Adomian decomposition method for the one-dimensional nonlocal Fisher - Kolmogorov - Petrovskii - Piskunov equation | Izvestiya vuzov. Fizika. 2019. № 4. DOI: 10.17223/00213411/62/4/135

Adomian decomposition method for the one-dimensional nonlocal Fisher - Kolmogorov - Petrovskii - Piskunov equation

The Adomian decomposition method is applied to construct an approximate solution of the generalized one-dimensional Fisher - Kolmogorov - Petrovsky - Piskunov equation describing population dynamics with nonlocal competitive losses. An approximate solution is constructed in the class of decreasing functions. The diffusion operator is taken as a reversible linear operator. The inverse operator is presented in terms of the diffusion propagator. An example of an approximate solution of the Cauchy problem for the function of competitive losses and the initial function of the Gaussian form is considered.

Download file
Counter downloads: 142

Keywords

diffusion propagator, approximate solutions, Adomian decomposition method, nonlocal generalized Fisher - Kolmogorov - Petrovsky - Piskunov equation, диффузионный пропагатор, метод разложения Адомиана, приближенные решения, нелокальное обобщенное уравнение Фишера - Колмогорова - Петровского - Пискунова

Authors

NameOrganizationE-mail
Shapovalov A.V.National Research Tomsk State University; Tomsk State Pedagogical Universityshpv@phys.tsu.ru
Trifonov A.Yu.Tomsk State Pedagogical University; National Research Tomsk Polytechnic Universityatifonov@tpu.ru
Всего: 2

References

Szymanska Z., Rodrigo C.M., Lachowicz M., and Chaplain M.J. // Math. Mod. Method. Appl. Sci. - 2009. - V. 19. - No. 2. - P. 257-281.
Billy F. and Clairambault J. // Discrete and Continuous Dynamical Systems - Series B, American Institute of Mathematical Sciences. - 2013. - V. 18. - No. 4. - P. 865-889.
Nicoll J., Gorbunov E.A., Tarasov S.A., and Epstein O.I. // Int. J. Endocrinol. - 2013. - P. 925874.
Tarasov S.A., Zarubaev V.V., Gorbunov E.A., et al. // Antivir. Res. - 2012. - V. 93. - P. 219- 224.
Epstein O. // Symmetry. - 2018. - V. 10. - No. 4. - P. 103 (14 p.).
Шаповалов А.В. // Изв. вузов. Физика. - 2017. - Т. 60. - № 9. - С. 3-9.
Lee C., Zhu K.-D., and Chen J.-G. // Phys. Rev. E. - 2013. - V. 88. - No. 054103 (3 p.).
Daoud Y. and Khidirn A.A. // Propuls. Power Res. - 2018. - V. 7. - No. 3. - P. 231-237.
Risken H. The Fokker-Planck Equation: Methods of Solution and Applications. - 2nd ed. - Berlin: Springer, 1989.
Duan J.-S., Rach R., Wazwaz A.-M., et al. // Appl. Math. Modell. - 2013. - V. 37. - P. 8687-8708.
Abassy T.A. // Comput. Math. Appl. - 2010. - V. 59. - P. 42-54.
Duan J.-S., Chaolu T., Rach R., and Lu L. // Comput. Math. Appl. - 2013. - V. 66. - P. 728-736.
Wazwaz A.-M. // Appl. Math. Comput. - 2005. - V. 166. - P. 652-663.
Duan J.-S. and Rach R. // Appl. Math. Comput. - 2011. - V. 218. - P. 4090-4118.
Adomian G. // J. Math. Anal. Appl. - 1988. - V. 135. - P. 501-544.
Adomian G. and Rach R. // J. Math. Anal. Appl. - 1993. - V. 174. - P. 118-137.
Трифонов А.Ю., Шаповалов А.В. // Изв. вузов. Физика. - 2009. - Т. 52. - № 9. - С. 14-23.
Shapovalov A.V. and Trifonov A.Yu. // Int. J. Geom. Meth. Mod. Phys. - 2018. - V. 15. - No. 1850102 (30 p.).
Levchenko E.A., Shapovalov A.V., and Trifonov A.Yu. // J. Math. Analys. Appl. - 2012. - V. 395. - No. 2. - P. 716-726.
Fuentes M.A., Kuperman M.N., and Kenkre V.M. // Phys. Rev. Lett. - 2003. - V. 91. - No. 58104 (4 p.).
Maruvka Y.E. and Shnerb N.M. // Phys. Rev. E. - 2006. - V. 73. - P. 011903.
Grindrod P. The Theory and Application of Reaction-Diffusion Equations. - Oxford: Clarendon Press, 1996.
Nicolis G. and Prigogine I. Self-Organization in Nonequilibrium Systems: - N.Y.: Wiley, 1977.
Эбелинг В. Образование структур при необратимых процессах. - М.: Мир, 1979.
Ванаг В.К. Диссипативные структуры в реакционно-диффузионных системах. Эксперимент и теория. - М.: Изд-во «ИКИ», 2008.
Fisher R.A. // Annu. Eugenics. - 1937. - V. 7. - P. 255-369.
Колмогоров А.Н., Петровский Н.Г., Пискунов Н.С. // Бюл. МГУ. Сер. А. Математика и Механика. - 1937. - Т. 1. - № 6. - С. 1-16.
 Adomian decomposition method for the one-dimensional nonlocal Fisher - Kolmogorov - Petrovskii - Piskunov equation | Izvestiya vuzov. Fizika. 2019. № 4. DOI:  10.17223/00213411/62/4/135

Adomian decomposition method for the one-dimensional nonlocal Fisher - Kolmogorov - Petrovskii - Piskunov equation | Izvestiya vuzov. Fizika. 2019. № 4. DOI: 10.17223/00213411/62/4/135