To the question of dispersion of electromagnetic, elastic and diffusion waves in crystalline solids | Izvestiya vuzov. Fizika. 2019. № 3. DOI: 10.17223/00213411/62/3/76

To the question of dispersion of electromagnetic, elastic and diffusion waves in crystalline solids

Dispersive dependences of frequencies of own oscillations of electromagnetic, elastic and diffusion waves are found in work. The analysis is based on the derivation of the general invariant expression for the density of the Lagrange function in quadratic by the vector of deformations internal points of the elastic deformed body, on potentials of the electromagnetic field and , concentrations of diffuse substances , when they are connected to each other. Due to the method of the least action four interconnected linear differential equations were obtained, from which the solution found all four spectrum of connected frequencies , where Index , and is a wave vector. It is noted that the found dispersion plays an important role in the quantum case, if the interactions between all four components are considered, when knowledge of dependencies is need.

Download file
Counter downloads: 109

Keywords

Lagrange’s function, concentration, deformation, dispersion, EM potentials, функция Лагранжа, концентрация, деформация, дисперсия, ЭМ-потенциалы

Authors

NameOrganizationE-mail
Gladkov S.O.Moscow Aviation Institute (National Research University)sglad51@mail.ru
Всего: 1

References

Левинский Ю.В., Лебедев М.П. // Доклады Академии наук. - 2014. - Т. 456. - Вып. 4. - С. 417-419.
Ландау Л.Д., Лифшиц Е.М. Теория поля. - М.: Наука, 2002. - 520 с.
Кумар Р., Кансал Т. // Известия РАН. МТТ. - 2012. - Вып. 3. - С. 93-115.
Aouadi M. // J. Thermal Stress. - 2008. - V. 31. - P. 270-285.
Kumar R. and Kansal T. // Int. J. Solids Struct. - 2008. - V. 45. - P. 5890-5913.
Sherief H.H., Hamza F., and Saleh H. // Intern. J. Eng. Sci. - 2004. - V. 42. - P. 591-608.
Sherief H.H. and Saleh H.A. // Int. J. Solids Struct. - 2005. - V. 42. - P. 4484-4493.
Singh B. // J. Earth Syst. Sci. - 2005. - V. 114. - No. 2. - P. 159-168.
Singh B. // J. Sound Vibrat. - 2006. - V. 291. - No. 3-5. - P. 764-778.
Aouadi M. // ZAMP. - 2006. - V. 57. - No. 2. - P. 350-366.
Aouadi M. // J. Thermal Stress. - 2007. - V. 30. - P. 665-678.
Gawinecki J.A., Kacprzyk P., and Bar-Yoseph P. // J. Anal. Appl. - 2000. - V. 19. - P. 121-130.
Gawinecki J.A. and Szymaniec A. // Proc. Appl. Math. Mech. - 2002. - V. 1. - P. 446-447.
Nowacki W. // Engin. Fract. Mech. - 1976. - V. 8. - P. 261-266.
Гуревич В.Л. Кинетика фононных систем. - М.: Наука, 1981.
Ландау Л.Д., Лифшиц Е.М. Теория упругости. Т. 6. - М.: Наука, 1988.
Lord H.W. and Shulman Y.A. // J. Mech. Phys. - 1967. - V. 15. - P. 299-309.
Nowacki W. // Bull. Polish Acad. Sci. Ser. Sci. and Technol. - 1974. - V. 22. - P. 55-64.
Горский В.С. // ЖЭТФ. - 1936. - Т. 6. - С. 272-284.
Займан Дж. Принципы теории твердого тела. - М.: Мир, 1974.
Gorsky W.S. // Phys. Zs. Sowjet. - 1935. - V. 8. - P. 457- 462.
Гладков С.О. // Изв. вузов. Физика. - 2016. - Т. 59. - № 8. - С. 129-133.
 To the question of dispersion of electromagnetic, elastic and diffusion waves in crystalline solids | Izvestiya vuzov. Fizika. 2019. № 3. DOI:  10.17223/00213411/62/3/76

To the question of dispersion of electromagnetic, elastic and diffusion waves in crystalline solids | Izvestiya vuzov. Fizika. 2019. № 3. DOI: 10.17223/00213411/62/3/76